Support Feedipedia

Automatic translation

Who is visiting Feedipedia?


Editor area

Centro (Centrosema molle)

Description and recommendations

Common names

Centro, butterfly pea, spurred butterfly pea [English]; fleur languette, pois bâtard [French]; frijol cuchillo, gallinita, patillo, bejuquillo [Spanish]; jitirana [Portuguese]

Taxonomic information

All material of the species known as Centrosema pubescens (except cv. Belalto) should be called Centrosema molle Mart. ex Benth., and all material of the species agronomically hitherto known as Centrosema schiedeanum should be called Centrosema pubescens Benth. (Schultze-Kraft, 2009).


Bradburya pubescens (Benth.) Kuntze, Centrosema pubescens Benth. (Schultze-Kraft, 2009; USDA, 2009).

Related feed(s)


Centro (Centrosema molle Mart. ex Benth.) is a vigorous twining, trailing and climbing perennial legume. It has a deep root-system with tap roots and lateral roots. Leaves are dark green and trifoliate (Ecocrop, 2009). Leaflets are ovate, 4 cm long x 3.5 cm broad. Flowers, borne in axillary racemes, are bright or pale lilac with violet stripes. Pods are linear, slightly twisted, 7.5 cm to 15 cm long and become dark brown when ripe. They contain up to 20 seeds (FAO, 2009).

Centro is a valuable legume forage for pasture, hay and silage. Commercial herbage cultivars have been developed.


Centro is native to Central and South America. It is now widespread in the wet tropics from 22°S to 22°N latitude and up to an altitude of 1600 m (Teitzel et al., 1992). It grows best on fertile, humid soils. Optimal annual rainfall ranges from 1500 to 1700 mm but centro is known to tolerate 800 mm and a 3 to 4-month dry season. It withstands waterlogging and flooding and is tolerant to shade (up to 80%). Centro cannot tolerate low temperatures, grows poorly below 15°C and is severely damaged by frost (Teitzel et al., 1992).

Forage management

After four to eight months, centro forms a dense cover 40 to 45 cm high and is able to fix N (ranging from 120 to 270 kg/ha) since it nodulates very soon after seedling. It is then commonly cultivated with grasses (mainly Panicum maximumChloris gayana and Pennisetum purpureum), which benefit from N enrichment of the soil and thus have greater yields. Annual yields of green matter are around 5-14 t/ha but 40 t/ha has been recorded (Ecocrop, 2009). Average dry matter yields in mixed pastures are about 3 t/ha (Teitzel et al., 1992).

Environmental impact

Like other N fixing legumes, centro is a soil improver. Its association with grass is beneficial to grass yields making N fertilizer unnecessary (Castillo et al., 2003). Centro is also used as green manure crop in rubber, coconut and oil-palm plantations (Lascano et al., 1990).

Potential constraints

Centro seeds contain total phenols, protein precipitable tannins, L-dopa and phytic acid. Heat treatment results in reduction of these antinutritional factors (Iyayi et al., 2008).

Nutritional attributes

Centrosema forage is generally described as fairly good quality forage with high protein content but medium digestibility. Centro is reported to meet mineral requirements. It has also low tannin concentration (Lascano et al., 1990).

Tables of chemical composition and nutritional value


Centro is one of the most palatable legumes (Teitzel et al., 1992) and considered to be a valuable feedstuff since it provides fresh green matter during the dry season when most grasses are not very palatable. It is nevertheless recommended to wait one year after sowing before grazing it in order to ensure a perennial establishment. Grazing must be carefully managed and heavy grazing avoided. Centro can also make good hay and silage (in association with Guinea grass for example) if cut between flowering and seedling (FAO, 2009).

Pastures made up of grass and centro are more resistant to weeds than other grass and legumes mixtures. They also support cattle for up to 7 to 10 years.


Including centro in cattle diets increases the solubility of P and Na (Ajayi et al., 2009). Pastures based on grass mixed with centro alone or with centro in association with other legumes can support good body weight gains in cattle.

Body weight gain in cattle supported by centro

Association Body weight gain (BWG) Zone References
Guinea grass + Centro 500-600 kg BWG/ha/year   Lascano et al., 1990
Para grass + Centro 550-711 kg BWG/ha/year Vanuatu Mullen et al., 1998
Star grass + legumes mixture including Centro 570 kg BWG/ha/year Cuba Mejias et al., 2003
Natural pasture + legumes mixture including Centro 600 kg BWG/ha/year Cuba Castillo et al., 2003
Coconut+grass+ Centro 250-400 kg BWG/ha/year Samoa Reynolds, 1981


Sheep in Ghana preferred centro to pueraria. Dry matter intake was higher when centro was mixed with Asystasia gangetica within a three strata association of herbs, cashew and mango (Asiedu et al., 1978). In Zambia, the addition of centro to maize stover improved the nutritive value of sheep diets and it was suggested that maize stover could be better utilized by intercropping with legumes and allowing livestock access after the grain harvest (Undi et al., 2001);


Centro was assessed as a component of pasture for grazing pigs. It was shown to have low palatability and ranked last behind other forage legumes (Clitoria ternatea and Macroptilium atropurpureum) (Mora et al., 2005). Former results obtained in 1973 had reported no significant difference in body weight gain, intake and feed conversion ratio between hays of  centro, siratro (Macroptilium atropurpureum), and tropical kudzu (Puerari javanica) when they were used to replace alfalfa hay in growing pigs diet (Lima et al., 1973).



Fresh centro leaves supplementing a commercial broiler diet had a slight positive effect on body weight gain (Etela et al., 2007).

Centro seeds were used in broilers diets up to a 15% inclusion rate. Heating (1 h at 100°C) reduced the antinutritional factors in the seeds, improved their nutritive value and the feed intake and growth rate of the broilers (Iyayi et al., 2008).

Laying hens

Centro leaf meal was not recommended for pullet chicks even at a low inclusion rate (2-6%) as it resulted in lower body weight gains (Nworgu et al., 2007).


Centro can be included successfully in rabbit diets to supplement a mash (Agiang et al., 2009) or rice bran pellets (Prawirodigdo et al., 1989), though other feedstuffs (Mucuna cochinchinensis) may give better results (Ojewola et al., 1999).


Heuzé V., Tran G., 2014. Centro (Centrosema molle). A programme by INRA, CIRAD, AFZ and FAO. Last updated on June 12, 2014, 13:25


Tables of chemical composition and nutritional value

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 25.8 5.2 17.6 38.7 210
Crude protein % DM 18.9 4.6 8.4 26.6 230
Crude fibre % DM 30.7 3.4 25.2 37.8 216
NDF % DM 55.4 7.7 44.0 68.2 7
ADF % DM 39.5 6.8 27.4 47.1 6
Lignin % DM 8.5 3.7 4.7 14.2 6
Ether extract % DM 2.5 0.5 1.5 3.5 216
Ash % DM 7.6 1.4 4.4 10.8 192
Gross energy MJ/kg DM 19.0 *
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 9.5 2.3 3.3 14.7 224
Phosphorus g/kg DM 2.6 0.5 1.6 3.8 224
Potassium g/kg DM 16.8 5.8 4.8 27.7 209
Sodium g/kg DM 0.4 0.6 0.1 2.3 13
Magnesium g/kg DM 3.3 0.9 1.9 6.0 204
Manganese mg/kg DM 126 60 38 217 17
Zinc mg/kg DM 35 6 19 46 18
Copper mg/kg DM 14 3 11 19 19
Iron mg/kg DM 229 60 143 306 13
Amino acids Unit Avg SD Min Max Nb
Arginine % protein 4.3 1
Cystine % protein 1.0 1
Glycine % protein 4.3 1
Histidine % protein 1.6 1
Isoleucine % protein 3.8 1
Leucine % protein 6.2 1
Lysine % protein 3.5 1
Methionine % protein 1.6 1
Phenylalanine % protein 4.0 1
Threonine % protein 4.2 1
Tryptophan % protein 1.1 1
Tyrosine % protein 3.0 1
Valine % protein 4.5 1
Secondary metabolites Unit Avg SD Min Max Nb
Tannins (eq. tannic acid) g/kg DM 12.7 1
Tannins, condensed (eq. catechin) g/kg DM 1.0 1
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 64.4 *
OM digestibility, ruminants (gas production) % 68 1
Energy digestibility, ruminants % 61.6 *
DE ruminants MJ/kg DM 11.7 *
ME ruminants MJ/kg DM 9.3 *
ME ruminants (gas production) MJ/kg DM 7.6 2.0 6.5 9.9 3
Nitrogen digestibility, ruminants % 57.0 57.0 57.0 2
a (N) % 0.9 1
b (N) % 13.3 1
c (N) h-1 0.070 1
Nitrogen degradability (effective, k=4%) % 9 *
Nitrogen degradability (effective, k=6%) % 8 *

The asterisk * indicates that the average value was obtained by an equation.


Abaunza et al., 1991; Adjolohoun, 2008; Ajayi et al., 2008; Ajayi et al., 2009; Aka et al., 2004; Babayemi, 2007; CGIAR, 2009; CIRAD, 1991; Evitayani et al., 2004; Faria-Marmol et al., 2005; Gaulier, 1968; Holm, 1971; Holm, 1971; Mahyuddin et al., 1988; Nasrullah et al., 2003; Orden et al., 1999; Perez-Maldonado et al., 1996; Pirela-Leon et al., 2003; Serra et al., 1996; Warly et al., 2010

Last updated on 24/10/2012 00:43:13

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 92.8 1
Crude protein % DM 21.9 21.9 21.9 2
Ether extract % DM 2.0 1
Ash % DM 3.1 1
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 1.3 1
Phosphorus g/kg DM 3.5 1
Potassium g/kg DM 9.9 1
Sodium g/kg DM 0.1 1
Magnesium g/kg DM 1.7 1
Manganese mg/kg DM 38 1
Zinc mg/kg DM 32 1
Copper mg/kg DM 10 1
Iron mg/kg DM 74 1

The asterisk * indicates that the average value was obtained by an equation.


Odeyinka et al., 2004; Schlink et al., 1993

Last updated on 24/10/2012 00:43:13



Adesogan, A. T. ; Adeneye, J. A. , 2002. The nutritive potential of some underexploited tropical plants. Proc. Int. Conf. British, Am. Mex. Soc. Anim. Sci., Responding to the Increasing global demand for animal products, Merida, Mexico,November, 2002.
Adjolohoun, S., 2008. Yield, nutritive value and effects on soil fertility of forage grasses and legumes cultivated as ley pastures in the Borgou region of Benin. Thèse Faculté Universitaire des Sciences Agronomiques de Gembloux web icon
Agbede, J. O., 2006. Characterisation of the leaf meals, protein concentrates and residues from some tropical leguminous plants. J. Sci. Food Agric., 86 (9): 1292-1297 web icon
Agiang, E. A. ; Eneji, C. A. ; Iso, I. E. ; Isika, M. A., 2009. Effects of mixed-feeding on physiological development and nutritional qualities of rabbit meat. J. Agric., Biotech. Ecol., 2 (1): 69-77 web icon
Ajayi, F. T. ; Babayemi, O. J. ; Taiwo, A. A., 2009. Mineral solubility of Panicum maximum with four herbaceous forage legume mixtures incubated in the rumen of N'Dama steers. Anim. Sci. J., 80 (3): 250-257 web icon
Aregheore, E. M. ; Ali, I. ; Ofori, K. ; Rere, T., 2006. Studies on grazing behavior of goats in the Cook Islands: the animal-plant complex in forage preference/palatability phenomena. Int. J. Agric. Biol., 8 (2): 147-153 web icon
Asiedu, F. H. K. ; Oppong, E. N. W. ; Opoku, A. A., 1978. Utilisation by sheep of herbage under tree crops in Ghana. Trop. Anim. Health Prod., 10 (1): 1-10 web icon
Asiedu, F. H. K. ; Karikari, S. K., 1985. Energy and protein content and intake by stall fed lambs of pure and mixed swards of Centrosema pubescens Benth., Pueraria phaseoloides Benth. and Brachiaria mutica Stapf. under a mango plantation. J. Agric. Sci., 104 (1): 47-59 web icon
Barry, G. A., 1984. Cobalt concentrations in pasture species grown in several cattle grazing areas of Queensland. Queensland J. Agric. Anim. Sci., 41 (2): 73-81 web icon
Castillo, E. ; Ruiz, T. E. ; Stuart, R. ; Galindo, J. ; Hernandez, J. L. ; Diaz, H., 2003. Effect of the protein-energetic supplementation on the performance of male bovines grazing natural pastures associated with a mixture of creeping legumes. Cuban J. Agric. Sci., 37 (2): 143-147
Ecocrop, 2009. Ecocrop database. FAO web icon
Etela, I. ; Kalio, G. A. ; Monsi, A. ; Ezieshi, E. V., 2007. Feed intake, growth rate and some anatomical characteristics of broilers fed commercial diets supplemented with green feeds. Renewable Agriculture and Food Systems, 22 (4): 241-245 web icon
Evitayani ; Warly, L. ; Fariani, A. ; Ichinohe, T. ; Fujihara, T., 2004. Study on nutritive value of tropical forages in North Sumatra, Indonesia. Asian-Aust. J. Anim. Sci., 17 (11): 1518-1523 web icon
Eys, J. E. van; Ginting, S. ; Pulungan, H. ; Johnson, W. L. ; Van Eys, J. E., 1985. Sulfur fertilization of five tropical forages. II. Digestibility of dry matter and cell wall constituents. Proc. XV Int. Grassl. Congress, August 24-31, 1985, Kyoto, Japan: 1296-1297
FAO, 2009. Grassland Index. A searchable catalogue of grass and forage legumes. FAO web icon
Faría-Mármol, J. ; Morillo, D. E. ; Chirinos, Z., 2005. Effect of defoliation frequencies on the dry matter yield and nutrient content of two Centrosema species. Archivos Latinoamericanos de Produccion Animal, 13 (1): 1-6 web icon
Garza, T. R. ; Portugal, G. A. ; Aluja, S. A. , 1978. Meat production with Pangola grass (Digitaria decumbens) alone or associated with tropical legumes. Tecnica Pecuaria en Mexico, 35: 17-22 web icon
Gaulier, R., 1968. Composition en acides-aminés des principales légumineuses fourragères de Madagascar. Rev. Elev. Méd. Vét. Pays Trop., 21: 103-112 web icon
Holm, J., 1971. Personal communication. Nutrition Laboratory, Chiung Mai
Iyayi, E. A. ; Kluth, H. ; Rodehutscord, M., 2006. Chemical composition, antinutritional constituents, precaecal crude protein and amino acid digestibility in three unconventional tropical legumes in broilers. J. Sci. Food Agric., 86 (13): 2166-2171 web icon
Iyayi, E. A. ; Kluth, H. ; Rodehutscord, M., 2008. Effect of heat treatment on antinutrients and precaecal crude protein digestibility in broilers of four tropical crop seeds. Int. J. Food Sci. Technol., 43 (8): 610-616 web icon
Iyeghe-Erakpotobor, G. T. ; Muhammad, I. R., 2008. Intake of tropical grass, legume and legume-grass mixtures by rabbits. Trop. Grassl., 42: 112-119 web icon
Lascano, C. E. ; Teitzel, J. K. ; Eng Pei Kong, 1990. Nutritive value of Centrosema in animal production.. In: Schultze-Kraft Rainer (Ed) Centrosema: biology, agronomy, and utilization Ciat Publication No. 92. 1990. 666p
Lima, T de A. O. ; Lima, C. R. ; Peloso, V. P. M. ; Moreira, A. C. de S. ; Alvarenga, J. C., 1973. Substitution of alfalfa hay with hays of tropical legumes in growing pig diets. Pesq. Agropec. Bras., Sér. Zootec., 8: 9-11 web icon
Mejias, R. ; Michelena, J. B. ; Ruiz, T. E. ; Cino, D. M. ; Gonzalez, M. E. ; Albelo, N., 2003. Rearing system of female cattle, in the calf stage, with the utilization of legumes. Cuban J. Agric. Sci., 37 (3): 249-254 web icon
Mora, F. ; Novoa, L. ; Gonzalez, C. ; Figueroa, R., 2005. Acceptability of gramineous and leguminous for grazing swine. Rev. Unellez Cienc. Tecnol. Prod. Agric., 23: 1-7 web icon
Mullen, B. F. ; MacFarlane, D. C., 1998. The effect of band-seeding legumes into para grass (Brachiaria mutica) on pasture production, sustainability and animal productivity in Vanuatu. Trop. Grassl., 32 (1): 34-40
Ngodigha, E. M., 1994. Incorporation of Centrosema pubescens in broiler diets: effects on performance characteristics. Bulletin of Animal Health and Production in Africa, 42 (2): 159-161
Nworgu, F. C. ; Ajayi, F. T., 2005. Biomass, dry matter yield, proximate and mineral composition of forage legumes grown as early dry season feeds. Lives. Res. Rur. Dev., 17 (121) web icon
Nworgu, F. C. ; Fasogbon, F. O., 2007. Centrosema (Centrosema pubescens) leaf meal as protein supplement for pullet chicks and growing pullets. Int. J. Poult. Sci., 6 (4): 255-260 web icon
Odeyinka, S. M. ; Hector, B. L. ; Ørskov, E. R. ; Newbold, C. J., 2004. Assessment of the nutritive value of the seeds of some tropical legumes as feeds for ruminants. Livest. Res. Rural Dev., 16 (9) web icon
Ojewola, G. S. ; Ukachukwu, S. N. ; Abasiekong, S. F., 1999. Performance of growing rabbits fed concentrate alone and mixed concentrate-forage diets. J. Sustain. Agric. Environ., 1 (1): 51-55
Orden, E. A. ; Serra, A. B. ; Serra, S. D. ; Aganon, C. P. ; Cruz, E. M. ; Cruz, L. C. ; Fujihara, T., 1999. Mineral concentration in blood of grazing goats and some forage in lahar-laden area of Central Luzon, Philippines. Asian-Aust. J. Anim. Sci., 12 (3): 422-428 web icon
Perez-Maldonado, R. A. ; Norton, B. W., 1996. The effects of condensed tannins from Desmodium intortum and Calliandra calothyrsus on protein and carbohydrate digestion in sheep and goats. Br. J. Nutr., 76 (4): 515-533 web icon
Pirela-Leon, M. F. ; Morillo, D. E. ; Faria-Marmol, J., 2003. Evaluation of five accessions of Centrosema pubescens in cattle feeding programs in wet tropical forests. Revista Cientifica, Facultad de Ciencias Veterinarias, Universidad del Zulia, 13 (1): 28-32
Prawirodigdo, S. ; Abdelsamie, R. E. ; Aritonang, D., 1989. Effect of feeding various levels of Centrosema pubescens on the performance of fryer rabbits. J. Appl. Rabbit Res., 12 (3): 174-176
Ramirez, P. A., 1983. Improved meat yields with Andropogon in a mixed pasture. Pastos Tropicales, Boletin Informativo, 5 (3): 5-7
Reynolds, S. G., 1981. Grazing trials under coconuts in western Samoa. Trop. Grassl., 15 (1): 3-10
Schultze-Kraft, R., 2009. Centrosema pubescens is now Centrosema molle. CIAT web icon
Serra, S. D. ; Serra, A. B. ; Ichinohe, T. ; Fujihara, T., 1996. Ruminal solubilization of macrominerals in selected Philippine forages. Asian-Aust. J. Anim. Sci., 9 (1): 75-81 web icon
Teitzel, J. K. ; Chen, C. P., 1992. Centrosema pubescens Benth.. Record from Proseabase. Mannetje, L.'t and Jones, R.M. (Editors). PROSEA (Plant Resources of South-East Asia) Foundation, Bogor, Indonesia web icon
Thomas, D. ; Sumberg, J. E., 1995. A review of the evaluation and use of tropical forage legumes in sub-Saharan Africa. Agriculture, Ecosystems and Environment, 54: 151-163 web icon
Undi, M. ; Kawonga, K. C. ; Musendo, R. M., 2001. Nutritive value of maize stover/pasture legume mixtures as dry season supplementation for sheep. Small Rumin. Res., 40 (3): 261-267 web icon
USDA, 2009. GRIN - Germplasm Resources Information Network. National Germplasm Resources Laboratory, Beltsville, Maryland web icon
Warly, L. ; Evitayani; Fariani, A., 2010. Concentration of micro minerals in fiber fraction of forages. World Academy of Science, Engineering and Technology, 68 (202): 1196-1202 web icon