Support Feedipedia

Automatic translation

Who is visiting Feedipedia?

 

Editor area

Velvet bean (Mucuna pruriens)

Description and recommendations

Common names

Mauritius bean, itchy bean, krame, chiporro, buffalobean, velvet bean, picapica, bengal bean, cowitch, cowhage [English]; mucuna, dolic, haricot de Floride, haricot de Maurice, pois mascate, pois velus [French]; fríjol terciopelo, mucuna, café incasa, nescafé, café listo, fríjol abono [Spanish]; po de mico, fava coceira, cabeca de frade [Portuguese]

Synonyms

Carpopogon capitatum Roxb., Carpopogon capitatus Roxb., Carpopogon niveum Roxb., Macranthus cochinchinensis Lour., Mucuna aterrima (Piper & Tracy) Holland, Mucuna atrocarpa F.P. Metcalf, Mucuna capitata Wight & Arn., Mucuna deeringiana (Bort) Merr., Mucuna hassjoo (Piper & Tracy) Mansf., Mucuna martinii H. Lev. & Vaniot, Mucuna nivea (Roxb.) Wight & Arn., Mucuna pruriens (L.) DC. var. capitata Burck, Mucuna pruriens (L.) DC. var. capitata (Wight & Arn.) Burck, Mucuna pruriens (L.) DC. var. nivea (Roxb.) Haines, Mucuna utilis Wight, Stizolobium aterrimum Piper & Tracy, Stizolobium deeringianum Bort, Stizolobium hassjoo Piper & Tracy, Stizolobium pruriens (L.) Medik., Stizolobium pruriens (L.) Medik. var. hassjoo (Piper & Tracy) Makino, Stizolobium utile (Wall. ex Wight) Ditmer, Stizolobium niveum (Roxb.) Kuntze

Related feed(s)

Description

Velvet bean (Mucuna pruriens (L.) DC. var. utilis (Wall. ex Wight) Baker ex Burck) is a leguminous vine. It is annual or sometimes short-lived perennial. Velvet bean is vigorous, trailing or climbing, up to 6-18 m long (US Forest Service, 2011; Wulijarni-Soetjipto et al., 1997). It has a taproot with numerous, 7-10 m long, lateral roots. The stems are slender and slightly pubescent (Wulijarni-Soetjipto et al., 1997). The leaves are generally slightly pubescent, alternate, trifoliolate with rhomboid ovate, 5-15 cm long x 3-12 cm broad, leaflets (US Forest Service, 2011; Wulijarni-Soetjipto et al., 1997). The inflorescence is a drooping axillary raceme that bears many white to dark purple flowers. After flower pollination, velvet bean produces clusters of 10 to 14 pods. They are stout, curved, 10-12.5 cm long, 2-6 seeded, covered with greyish-white or orange hairs that may cause irritation to the skin (US Forest Service, 2011). The velvet bean seeds are variable in colour, ranging from black glossy to white or brownish with black mootling. Seeds are oblong ellipsoid, 1.2 to 1.5 cm long, 1 cm broad and 0.5 cm thick (FAO, 2011; US Forest Service, 2011; Wulijarni-Soetjipto et al., 1997).

Velvet bean has three main uses: food, feed (forage and seeds) and environmental services. The young leaves, pods and seeds are edible and used in several food specialties including "tempeh" a fermented paste made of boiled seeds, originally from Indonesia. Velvet bean is also used as a coffee substitute in Central America (Eilittä et al., 2003). The plant can be a cover crop and provide fodder and green manure. In the USA, velvet bean is also used as an ornamental species (Wulijarni-Soetjipto et al., 1997). There are numerous cultivars of velvet bean in the world (FAO, 2011).

Velvet bean is a valuable fodder and feed legume. Vines and foliage can be used as pasture, hay or silage for ruminants while pods and seeds can be ground into a meal and be fed to both ruminants and monogastrics (Chikagwa-Malunga et al., 2009d; Eilittä et al., 2003). Pods with their seeds can be ground into a rich protein meal and can be fed to all classes of livestock though in limited amount in monogastrics (Chikagwa-Malunga et al., 2009d)

Distribution

Velvet bean originated from southern Asia and Malaysia and is now widely distributed in the tropics (FAO, 2011). It was introduced to the southern states of USA in the late 19th century and from there was reintroduced to the tropics in the early part of the 20th century (Eilittä et al., 2003). Velvet bean is found from sea level to 2100 m (Ecocrop, 2011). Velvet bean requires a hot moist climate with annual rainfall ranging from 650 to 2500 mm and a long frost-free growing season during the wet months. It can grow on a wide range of soils, from sands to clays but thrives on well-drained, light textured soils of appreciable acidity (FAO, 2011; Pengelly et al., 2004).

Forage management

Yields

Velvet bean is suitable in intercropping systems where it is grown with maize (Cook et al., 2005), pearl millet, sorghum or sugarcane for support (Göhl, 1982). The crop gives reliable yields in dry farming and low soil fertility conditions that do no allow the profitable cultivation of most other food legumes (Buckles et al., 1998). Velvet bean yields range from 10 to 35 t green material/ha and from 250 to 3300 kg seeds/ha depending on the cultivation conditions (Ecocrop, 2011).

Velvet bean pods harvest can start as soon as the pods start turning from green to dark brown or black; in Malaysia this is possible 215 to 255 days after sowing. Pods are harvested by hand (Wulijarni-Soetjipto et al., 1997).

Grazed pasture

Animals can enter the sward after the pods have matured. In Hawai, grazing 170 to 220 days after sowing resulted in yields of 19 t/ha of green forage and 3.85 t/ha of seeds (Takahashi et al., 1949 cited by FAO, 2011).

Cut forage

When velvet bean is intended for forage, it may be harvested 90-120 days after sowing, when the pods are still young (Wulijarni-Soetjipto et al., 1997; Ravindran, 1988). Harvesting at about 120 days after planting resulted in the best combination of biomass yield and nutritive value (Chikagwa-Malunga et al., 2009a). In Malaysia, the first harvest for fodder can be done 2 months after sowing. A cutting interval of 5 weeks and cutting at a height of 30 cm provides a reasonable yield of forage of adequate quality (Wulijarni-Soetjipto et al., 1997). Yields of green fodder may be up to 20-35 t/ha resulting in 8.2-16.4 t DM/ha (Ecocrop, 2011).

Hay

Because of its dense matted growth, velvet bean is difficult to harvest and cure for hay (FAO, 2011). Yields of hay average 2.8-3.6 t/ha (Ecocrop, 2011).

Silage

Velvet bean may be cultivated for silage, but as it is hard to harvest, flail-type harvesters do a better job than mowing machines. Velvet bean can be grown in mixture and then ensiled with a grain crop (maize is the most frequent crop but sorghum is also possible) or with grasses such as Napier grass (Contreras-Govea et al., 2009; Mbuthia et al., 2003). However, because velvet bean is rather diffcult to harvest, it is also recommended to grow velvet beans and the companion crop separately and then mix when ensiling (FAO, 2011).

Processes

Many treatments have been proposed to decrease the content in antinutritional factors of the seeds, such as boiling in water for one hour, autoclaving for 20 minutes, water-soaking for 48 h and then boiling for 30 minutes, or soaking the cracked seeds for 24 h in 4 % Ca(OH)2 (Cook et al., 2005, Pugalenthi et al., 2005).

Environmental impact

Cover crop and soil improver

The main attributes of velvet bean are its fast growth and its long growing season in frost-free environments. It is thus possible for velvet bean to protect the soil along the wet monsoonal season (FAO, 2011; Cook et al., 2005).

Velvet bean is a N-fixing legume that has no specific rhizobium requirements, N fixation is favoured by warm temperatures (FAO, 2011).

As a leguminous species velvet bean is reported to improve soil fertility, it provides more than 10 t DM aboveground biomass/ha and it yields some 331 kg N/ha, equivalent to 1615 kg ammonium sulfate/ha (Cook et al., 2005; Buckles et al., 1998; Wulijarni-Soetjipto et al., 1997). Velvet bean also yields 100 kg K ha-1, and 20 kg P ha-1 (Buckles et al., 1998). In Central America, it is widely grown either relay planted with maize or as a rainy season fallow crop in rotation with dry season maize and it was reported to improve maize yield by 500 kg/ha just after a 1-year fallow or even as much as 1-2 t/ha (ILRI, 2004; Wulijarni-Soetjipto et al., 1997).

Velvet bean is mainly grown as a cover crop and green manure because it can establish very quickly without requiring complete soil preparation (Cook et al., 2005). In intercropping systems including maize and velvet bean, the fast growing legume accumulates nutrient through N fixation and it protects the soil from heavy rains in the rainy season. Once slashed into a the thick mulch, the velvet bean foliage protects the soil from erosion and prevents weeds germination. Velvet bean has also a positive effect on soil moisture (Buckles et al., 1998).

As a cover crop, velvet bean sown in rubber plantation can yield about 2 t/ha of fresh organic matter within 6 months (Wulijarni-Soetjipto et al., 1997). It has been planted as a cover crop under coconut plantations in Sri Lanka (Ravindran, 1988). It used to be an important cover crop in citrus and banana plantations (Wulijarni-Soetjipto et al., 1997).

Weeds and pest control

Velvet bean has an overall beneficial effect on companion crops in intercropping systems due to its pest resistance and disease resistance. When established, the crop smothers weeds effectively (FAO, 2011). Velvet bean is one of the most suitable crops for reclaiming land infested with weeds, notably Cynodon dactylon, Cyperus species, Saccharum spontaneum and Imperata cylindrica (Hellin, 2006; Wulijarni-Soetjipto et al., 1997). It is recommended for use in rotation with cotton in Brazil to limit Fusarium oxysporum infestation; it can also effectively control nematodes infestations by species such as Meloidogyne incognita (Wolf et al., 2003; Wulijarni-Soetjipto et al., 1997).

Potential constraints

Most toxicological problems due to velvet bean are due to its seeds.

L-dopa

Velvet bean seeds and, in a smaller extent, stems and leaves contain two important non-protein amino-acids: L-dopa from which dopamine, a potent anti-Parkinson disease agent, is prepared, and DMP (dimethyltriptamine), an hallucinogenic substance. L-dopa content varies from 1.6-7 % (Cook et al., 2005; Wulijarni-Soetjipto et al., 1997). Ensiling was able to decrease L-dopa content in the seeds by 10-47% (Matenga et al., 2003).

L-dopa is a potent antinutritional factor (Siddhuraju et al., 2002) and may cause severe vomiting and diarrhoea in pigs fed large quantities of velvet bean seeds. It is less harmful in ruminants: it does not seem to modify rumen fermentation and there is a ruminal microbial adaptation to L-Dopa (Chikagwa-Malunga et al., 2009b). Trials in sheep and goats fed velvet beans and pods did not found that L-dopa had adverse effects (Matenga et al., 2003; Castillo-Camaal et al., 2003a; Pérez-Hernandez et al., 2003; Castillo-Camaal et al., 2003b; Mendoza-Castillo et al., 2003)

Alkaloids

The seed contains a number of alkaloids, notably mucunaine, prurienine and serotine. Mucunaine is produced by pod hairs. It causes severe itching to the skin and the hairs coming in contact with the eyes can be very painful. L-dopa may also be implicated in skin eruptions (Pugalenthi et al., 2005). The negative effects of mucunain are potentialized by serotonin (Cook et al., 2005). It has been reported that haemorrhage and death can result from cattle eating the hairy pods (Miller, 2000). Pod hairs have the same anthelmintic efficacy as piperazine against ascariasis in buffalo calves (Behura et al., 2006)

Other antinutritional factors

Velvet bean seeds contains other antinutritional factors:

These antinutritional factors can be efficiently reduced by a wide range of treatments (See Processes).

Nutritional attributes

Velvet been forage contains 15-20 % protein (DM basis) (Sidibé-Anago et al., 2009). Seeds are rich in protein (24-30 %), starch (28 %) and gross enery (10-11 MJ/kg) (Pugalenthi et al., 2005; Siddhuraju et al., 2000). They also contain desirable amino acids, fatty acids and have a good mineral composition (Vadivel et al., 2007). The main problem with velvet bean seeds, notably in monogastric animals, are the various antinutritional factors they contain (see Potential constraints above).

Ruminants

Both meat and milk production can benefit from including legumes such as velvet beans forage and pods in feeds (Pengelly et al., 2004).

Pasture is the most important use of velvet bean. It is never well grazed by stock until it is well matured or frosted. It makes rather poor hay, especially if cut when mature, as the leaves easily fall off; also, the long vines are difficult to handle. Good silage can be made from velvet bean together with its supporting crop. It usually turns black after a time, but without impairing its quality (Göhl, 1982). Maize cultivated with velvet bean can be ensiled without any adverse effect on silage quality (Contreras-Govea et al., 2009). In Honduras, farmers developed for several years a valuable maize cropping system using velvet bean (Buckles et al., 1999).

Ruminants can also be fed pods and seeds. It is more economical to grind the whole pods rather than to separate the pods and the seeds (Göhl, 1982).

Growing and fattening cattle

Velvet bean forage was found to be an interesting feed for ruminants even in areas with low fertility and a short rainy season. Zebu cows and heifers fed low quality hay could ingest 61.8 to 76 g/kg W0.75 of velvet bean hay (Sidibé-Anago et al., 2009). It proved to be a cost-effective forage legume for growing cattle on natural rangeland (veld) in Zimbabwe: the animals gained weight when supplemented with velvet hay at 1.5 % W or more (20 kg in 3 months at 2 % W) and lost weight when not supplemented or supplemented at 1 % W (-40 and -20 kg respectively) (Murungweni et al., 2004). In pen-fattened animals, velvet bean hay could also substitute for the commercial concentrate, and a diet of maize grain and velvet bean hay (5:3 ratio) plus ad libitum access to maize stover gave similar weight gain as the control diet (Murungweni et al., 2004).

Dairy cattle

In dairy cows, several trials in East and Southern Africa have shown that supplementation of grass-based diets with velvet bean forage, fresh or hay, can increase production (compared to non-supplemented diets) or maintain it (compared to other protein supplements).

Dairy cattle trials

Place

Animals

Diet

Performance

References

Kenya

Jersey cows

Chopped velvet bean (1.4 kg DM/d) + Napier grass + maize bran

Milk 6.3 kg/d (12 weeks)

Mureithi et al., 2003

Kenya

Jersey cows

Chopped velvet bean (2 kg DM/d) + Napier grass + maize bran

Milk 5.5 kg/d (24 weeks)

Muinga et al., 2003

Kenya

Jersey cows

Chopped velvet bean (1.6 kg DM/d) + Napier grass + maize bran

Milk 5.3 kg/d

Juma et al., 2006

Kenya

Holstein–Friesian cows

Velvet bean hay (2.1 kg DM/day) + Napier grass

Milk 3.75 kg/d

Nyambati et al., 2003

Zimbabwe

Jersey cows

Velvet bean hay + crushed maize grain in 5:4 ratio

Milk 9.0 kg/d

Murungweni et al., 2004

When compared to other legumes (Gliricidia sepium, Lablab purpureus and Clitoria ternatea), fresh velvet bean forage resulted in lower (Mureithi et al., 2003) or identical milk yield (Juma et al., 2006), but another comparison with Gliricidia in similar conditions resulted in higher milk yield for velvet bean forage (Muinga et al., 2003). A mucuna hay-based diet gave higher milk yield than the lablab hay-based one and Jersey cows eating lablab- and mucuna-based diets produced good quality milk that met the expected minimum market standards (Murungweni et al., 2004).

When cultivated in association with maize, velvet bean forage increased the protein content of the mixture, but did not increase the milk yield of dairy cattle (Armstrong et al., 2008).

Draught cattle

Velvet bean hay can significantly benefit smallholder farmers who rely on cattle as draught power. It is necessary for such farmers to supplement their animals during the dry winter season if they are to retain the draught capacity of the animals for the following season (Murungweni et al., 2004).

Sheep and goats

In young rams, velvet bean hay caused metabolic disorders (diarrhoea) if given in excess of 2.6 % of the animal bodyweight. Feeding velvet bean hay at 2.5 % bodyweight in the morning and poor-quality roughage such as wheat bran or maize stover in the afternoon was found to be a good solution (Murungweni et al., 2004)

Other trials have focused on the supplementation of forage diets with mucuna seeds and pods. Velvet beans were able support growth and milk production and improved performances when compared to grazing or grass-only diets. They also compared favourably with other supplements, though they may give lower results in some cases. No adverse effects were recorded (Castillo-Camaal et al., 2003a; Pérez-Hernandez et al., 2003; Castillo-Camaal et al., 2003b; Chikagwa-Malunga et al., 2009c; Mendoza-Castillo et al., 2003; Matenga et al., 2003).

The addition a small quantity of molasses may improve consumption (Matenga et al., 2003) and reduce dustiness (Pérez-Hernandez et al., 2003).

Ensiling decreases L-dopa content and increases energy intake and N retention but lowers the crude protein, so that milk production is not increased (Matenga et al., 2003).

Sheep trials

Place

Animals

Diet

Performance

References

Mexico

Pelibuey growing males

5-10 g/kg W pods + Napier grass

ADG 60 g/d (44 with control diet)

Castillo-Camaal et al., 2003a

Mexico

Male growing lambs

Ground pods (20%) + concentrate (20%) + Napier grass (60%) + 200 g molasses

DMI 780 g/d

DMD 68 %

Pérez-Hernandez et al., 2003

Mexico

Male growing lambs

Ground pods (40%) + Napier grass (60%) + 200 g molasses

DMI 650 g/d

DMD 64 %

Pérez-Hernandez et al., 2003

Mexico

Male growing lambs

Ad libitum ground pods (5 kg to 4 animals / day), with 300 g molasses

DMI 680 g/d

Pérez-Hernandez et al., 2003

Mexico, farm trial

Growing lambs

400 g/d ground pods + grazing secondary vegetation

ADG 95 g/d (63 g/d when only grazing)

Castillo-Camaal et al., 2003b

USA (Florida)

Rambouillet wether lambs

Rolled mucuna seeds (0-24% replacing 0-100% of soybean meal) + concentrate + Bermuda grass

DMI 1.4-1.6 kg/d

DMD 77-80 %

No difference between treatments

Chikagwa-Malunga et al., 2009c

USA (Florida)

Rambouillet wether lambs

Rolled mucuna seeds (0-23% replacing 0-100% of soybean meal) + concentrate + Bermuda grass

ADG 130-140 g/d (200 g/d for control diet). Good rumen conditions. No differences on carcass composition.

Chikagwa-Malunga et al., 2009c

Goat trials

Place

Animals

Diet

Performance

References

Mexico

Lactating Creole goats

870 g/d ground seeds + Napier grass

Milk 600 g/d. Total DMI and milk yield positively correlated to mucuna intake Slight trend for weight loss

Mendoza-Castillo et al., 2003

Mexico, farm trial

Lactating goats

500 g/d ground pods + grazing secondary vegetation

Weight loss -0.85 kg in 70 d (-1.4 kg when only grazing)

Castillo-Camaal et al., 2003b

Mexico, farm trial

Growing kids, pre-suckling

400 g/d ground pods + grazing secondary vegetation

ADG 130-214 g/d (86-110 when only grazing)

Castillo-Camaal et al., 2003b

Mexico, farm trial

Growing kids, post-suckling

400 g/d ground pods + grazing secondary vegetation

ADG 100 g/d with or without pods

Castillo-Camaal et al., 2003b

Zimbabwe

Lactating Mashona goats

Ground seeds + ground maize (50:50), ensiled (1.2 kg/d DM) or not (1.1 kg/d DM)

Milk 0.61-0.62 L/d

DMI 718 g/d (fresh)

DMI 935 g/d (ensiled)

Ensiling increases intake but not milk yield or kid weight gain

Matenga et al., 2003

Pigs

The relatively high protein and energy value of velvet bean seeds make them an interesting feed for pigs (Pugalenthi et al., 2005). In some cases, pigs are allowed to graze velvet bean pastures to consume the beans that have been left behind (Göhl, 1982).

However, the use of velvet bean seeds is limited by their deficiency in sulphur amino acids (Pugalenthi et al., 2005) and by the presence of numerous antinutritional and toxic factors (see Potential constraints). Feeding raw seeds can result in deleterious effects on the performance as well as blood constituents (Sridhar et al., 2007) and pigs should not be allowed to consume large amounts of velvet bean, either as forage or seeds (Göhl, 1982). Various maximum inclusion rates have been reported: some authors claim that it can be included up to 25 % while others found that such rate may cause severe vomiting and diarrhoea and proposed 5% as a much safer rate (Emenalom et al., 2004). The incorporation of 15 % of raw velvet beans in pig feeding caused 50% mortality in young animals (Emenalom et al., 2004).

In any case, processing velvet bean seeds is mandatory in order to be able to use them safely in pig feeds. Boiled seeds included at 25 % could satisfyingly replace maize in 40 kg pigs (Lizama et al., 2003). A more extensive process consisting in cracking the seeds, soaking them in water for 48 h and boiling them for 1 hour allowed to use the seeds up to 40 % in the diets of 15-35 kg pigs and to fully replace soybean meal while maintaining growth rate (341-351 g/d) and feed conversion ratio (2.53-2.58) (Emenalom et al., 2004).

Poultry

While proximate composition of velvet bean seeds makes it tempting to use it in poultry diets, the presence of antinutritional factors limits their practical interest, unless appropriate technological treatments are found (Carew et al., 2006).

Broilers, quails and Guinea fowls

Raw mucuna seeds should be avoided in broilers. Processed seeds (by dry roasting or soaking+boiling) can be included up to 10 %, with an adapted feed formulation, but even processed seeds should be used carefully and probably avoided in starter animals.

Performance is strongly degraded in broilers fed raw mucuna (Harms et al., 1961; Ferriera et al., 2003; Emiola et al., 2007; Emenalom et al., 2005b; Tuleun et al., 2008a). Degradation can occur at low incorporation levels: 5 % raw velvet bean can induce a 25 % drop in animal performances (Iyayi et al., 2006b). Significant mortality can be registered at high levels (Harms et al., 1961; Del Carmen et al., 1999). The effect is similar in Guinea fowl (Dahouda et al., 2009a). Velvet bean seems to be more detrimental to growth than to feed intake, although results differ among authors (Trejo et al., 2004; Emiola et al., 2007; Tuleun et al., 2008a, etc.). The feed conversion ratio is always strongly degraded.

Technological treatments, and particularly heat treatments, can help to reduce the negative effects of velvet bean (Carew et al., 2006). However, performance is seldom completely restored compared to control diets even if differences can be statistically non significant at lower inclusion rates. The main treatments that have been tested include: soaking (with or without additives in water), boiling, autoclaving, dry roasting and combinations of these techniques. These treatments help to decrease the levels of antinutritional factors such as antitrypsic factors, L-dopa, tannins and hemagglutination factors (Vadivel et al., 2011).

Dry roasting has been found to be an efficient way to limit the negative effects of velvet bean in broilers but also in Japanese quails (Del Carmen et al., 1999; Emiola et al., 2007; Ukachukwu et al., 2007b; Tuleun et al., 2009a). However some authors compared various treatments and found roasting less efficient than boiling in broilers and in Guinea fowls (Emenalom et al., 2005b; Dahouda et al., 2009a).

Regarding wet treatments, soaking alone (in water with ou without additives) is not efficient (Nyirenda et al., 2003; Tuleun et al., 2010b; Vadivel et al., 2011) and soaking should be combined to a heat treatment such as boiling or autoclaving. The duration of thermal treatments can have an effect: boiling velvet bean seeds for 20 min resulted in lower growth performance than 40 or 60 min (Tuleun et al., 2008a). For several authors, the optimal treatment consists in soaking (in water or Na bicarbonate) followed by boiling (60 to 90 min) and drying. This procedure was found to eliminate antinutritional factors efficiently (Vadivel et al., 2011) and allows to maintain performances up to 10-20% inclusion (Ukachukwu et al., 2003; Akinmutimi et al., 2006; Emenalom et al., 2006; Ukachukwu et al., 2007a; Ani, 2008; for Guinea fowls, Farougou et al., 2006). However, even roasted and soaked+boiled seeds can degrade performances at low inclusion rates (6-10 %) (Emenalom et al., 2005a; Iyayi et al., 2003; Vadivel et al., 2011).

Thermal treatment also improved protein digestibility, probably by inactivation of the antinutritional factors: for example 1 h dry exposure at 100°C increased protein digestibility from 65 % to 74 % (Iyayi et al., 2008).

The metabolizable energy value of velvet bean seeds varies with the process:

Process Energy type Energy value References
Raw seed TME 4.4 MJ/kg Ukachukwu et al., 1999
Toasted TME 12.6 MJ/kg Ukachukwu et al., 1999
Boiled TME 13.5 MJ/kg Ukachukwu et al., 1999
Soaked and boiled TME 13.4 MJ/kg Ukachukwu et al., 1999
Boiled AME 13.1 MJ/kg Emiola et al., 2007
Toasted AME 13.0 MJ/kg Emiola et al., 2007

Laying hens and quails

Using velvet bean seeds, even when processed, is not recommended in commercial egg production though economic considerations may make them profitable.

The use of raw velvet bean seeds in layer diets causes a strong degradation of performance. Daily egg production dropped from 78.5 % to 65.5 % with 12.5 % of raw seeds (Harms et al., 1961) and from 84 % to 38 % with 20 % of raw seeds (Tuleun et al., 2008b).

Technological treatments reduce the negative effects of velvet bean seeds, but do not enable the same performances as the control diets: in laying hens, the best treatment (toasting) allowed 74 % hen-day egg production vs 84 % in the control with 20 % velvet bean seeds, while boiled seeds yielded 59 % hen-day egg production (Tuleun et al., 2008b). In laying Japanese quails, 15 % of toasted seeds caused a significant degradation of the performances, but the lower feed cost per egg produced and feed cost per bird made using velvet bean seeds profitable (Tuleun et al., 2010b). Egg composition and quality were not affected by the inclusion of velvet bean seeds (Iyayi et al., 2003; Tuleun et al., 2008b).

Rabbits

Velvet bean seed meal and velvet bean leaves can be fed to rabbits.

Seeds and leaves can be fed together to rabbits, resulting in higher intake, increased diet digestibility and higher growth rates (208 g/week vs 67 g/week on basal diet) (Aboh et al., 2002). Up to 20 % cooked mucuna seed meal can be included in the diet of weaned rabbits (Taiwo et al., 2006). Velvet bean leaves compared favourably with soybean meal and gave similar daily weight gains (15 g/day vs 16 g/day) (Bien-Aimé et al., 1989).

Fish

Velvet bean seeds, like other tropical legume seeds, are a potential feed ingredient for fish diets, due to their high protein and carbohydrate content, that make them a potential substitute for fish meal and cereals (Ogunji et al., 2003). However, their use is limited by the presence of antinutritional factors and by an amino acid profile that does not meet fish requirements (Ogunji et al., 2003). Heat treatments as well as supplementation with other protein sources are therefore required (Hertrampf et al., 2000; Ogunji et al., 2003).

Velvet beans have been tested in the following fish species:

African catfish (Clarias gariepinus)

Low inclusion rates (5 %) of raw velvet bean seeds were recommended in juveniles of African catfish (Clarias gariepinus) (Aderolu et al., 2009).

Nile tilapia (Oreochromis niloticus)

In tilapia diets, it was possible to replace up to 25 % of the dietary protein with soaked and autoclaved velvet bean seeds (Siddhuraju et al., 2003).

Common carp (Cyprinus carpio)

For common carps (Cyprinus carpio), the level of L-Dopa should not behigher than 7 g/kg in the diet. The level of raw or processed velvet bean seeds should not exceed 20 % as it has deleterious effects on growth rate and feed utilisation (Siddhuraju et al., 2001; Siddhuraju et al., 2002).

Citation

Heuzé V., Tran G., Bastianelli D., Hassoun P., Renaudeau D., 2014. Velvet bean (Mucuna pruriens). Feedipedia.org. A programme by INRA, CIRAD, AFZ and FAO. http://www.feedipedia.org/node/270 Last updated on April 23, 2014, 11:38

Tables

Tables of chemical composition and nutritional value

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 24.7 7.8 15.0 45.4 17
Crude protein % DM 16.0 4.1 10.2 25.9 23
Crude fibre % DM 27.1 5.9 14.2 36.6 18
NDF % DM 38.5 25.4 10.3 59.6 3
ADF % DM 34.2 15.6 7.1 45.6 5
Lignin % DM 12.5 2.4 10.0 14.9 3
Ether extract % DM 2.4 0.9 1.3 4.7 18
Ash % DM 7.9 1.8 5.2 12.2 23
Gross energy MJ/kg DM 18.6 *
 
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 10.3 2.4 6.3 14.2 20
Phosphorus g/kg DM 1.9 0.5 1.2 3.1 17
Potassium g/kg DM 15.6 5.8 6.7 24.9 19
Sodium g/kg DM 0.1 0.0 0.0 0.1 6
Magnesium g/kg DM 2.8 0.9 0.6 4.5 19
Manganese mg/kg DM 70 14 126 2
Zinc mg/kg DM 71 75 23 157 3
Copper mg/kg DM 20 6 16 27 3
Iron mg/kg DM 740 335 1145 2
 
Secondary metabolites Unit Avg SD Min Max Nb
Tannins (eq. tannic acid) g/kg DM 18.0 1
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 68.1 68.0 69.8 2 *
Energy digestibility, ruminants % 65.1 *
DE ruminants MJ/kg DM 12.1 *
ME ruminants MJ/kg DM 9.7 *
Nitrogen digestibility, ruminants % 74.0 73.0 75.0 2

The asterisk * indicates that the average value was obtained by an equation.

References

Adjolohoun, 2008; Axtmayer et al., 1938; Barnes, 1999; CIRAD, 1991; Devendra et al., 1970; Diaz et al., 2002; Gowda et al., 2004; Juma et al., 2006; Ly et al., 2002; Pozy et al., 1996; Xandé et al., 1989

Last updated on 24/10/2012 00:45:16

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 90.6 1
Crude protein % DM 14.8 1
Crude fibre % DM 30.7 1
Ether extract % DM 2.6 1
Ash % DM 8.9 1
Gross energy MJ/kg DM 18.5 *
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 60.8 *
Energy digestibility, ruminants % 57.3 *
DE ruminants MJ/kg DM 10.6 *
ME ruminants MJ/kg DM 8.5 *
Nitrogen digestibility, ruminants % 63.9 1

The asterisk * indicates that the average value was obtained by an equation.

References

Walker, 1975

Last updated on 24/10/2012 00:45:16

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 89.2 1
Crude protein % DM 4.3 1
Crude fibre % DM 42.4 1
Ether extract % DM 0.7 1
Ash % DM 5.9 1
Gross energy MJ/kg DM 18.3 *
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 80.7 *
 
Pig nutritive values Unit Avg SD Min Max Nb
Energy digestibility, growing pig % 23.5 *
DE growing pig MJ/kg DM 4.3 *

The asterisk * indicates that the average value was obtained by an equation.

References

Naik, 1967

Last updated on 24/10/2012 00:45:17

Main analysis Unit Avg SD Min Max Nb
Crude protein % DM 21.0 1
Crude fibre % DM 15.6 1
Ether extract % DM 2.6 1
Ash % DM 4.5 1
Gross energy MJ/kg DM 19.0 *
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 89.1 *
 
Pig nutritive values Unit Avg SD Min Max Nb
Energy digestibility, growing pig % 65.6 *
DE growing pig MJ/kg DM 12.4 *

The asterisk * indicates that the average value was obtained by an equation.

References

Tracy et al., 1918

Last updated on 24/10/2012 00:45:17

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 90.8 2.5 88.5 94.7 8
Crude protein % DM 27.7 5.2 18.2 37.0 9
Crude fibre % DM 7.8 1.8 4.8 9.5 6
NDF % DM 19.8 7.5 14.6 28.4 3
ADF % DM 7.5 6.0 9.1 2
Lignin % DM 0.9 0.8 0.2 1.8 3
Ether extract % DM 2.6 1.6 0.7 4.7 7
Ash % DM 3.7 0.5 3.0 4.6 8
Starch (polarimetry) % DM 51.6 1
Total sugars % DM 6.6 1
Gross energy MJ/kg DM 19.2 *
 
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 1.9 1.0 1.0 3.0 3
Phosphorus g/kg DM 4.3 1.2 2.9 5.1 3
Potassium g/kg DM 8.1 1
Magnesium g/kg DM 1.9 1
 
Amino acids Unit Avg SD Min Max Nb
Alanine % protein 0.7 0.6 0.9 2
Arginine % protein 3.8 3.6 1.7 7.9 3
Aspartic acid % protein 1.8 1.7 2.0 2
Cystine % protein 1.2 0.9 1.5 2
Glutamic acid % protein 4.4 4.2 4.5 2
Glycine % protein 4.6 1
Histidine % protein 1.7 0.4 1.4 2.1 3
Isoleucine % protein 2.6 1.9 1.4 4.8 3
Leucine % protein 4.7 2.5 3.1 7.6 3
Lysine % protein 4.2 2.8 1.7 7.0 4
Methionine % protein 1.3 1.2 1.3 2
Phenylalanine % protein 2.7 1.8 1.5 4.8 3
Serine % protein 0.9 0.9 1.0 2
Threonine % protein 4.0 1
Tryptophan % protein 1.0 0.7 1.2 2
Tyrosine % protein 5.1 1
Valine % protein 2.8 2.3 1.4 5.5 3
 
Secondary metabolites Unit Avg SD Min Max Nb
Tannins (eq. tannic acid) g/kg DM 1.6 0.0 3.3 2
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 91.5 *
Energy digestibility, ruminants % 90.4 *
DE ruminants MJ/kg DM 17.4 *
ME ruminants MJ/kg DM 13.9 *
Nitrogen digestibility, ruminants % 81.0 1
 
Pig nutritive values Unit Avg SD Min Max Nb
Energy digestibility, growing pig % 77.8 *
DE growing pig MJ/kg DM 14.9 *
MEn growing pig MJ/kg DM 14.2 *
NE growing pig MJ/kg DM 10.3 *

The asterisk * indicates that the average value was obtained by an equation.

References

AFZ, 2011; Belewu et al., 2008; Cerighelli et al., 1960; Cirad, 2008; Diaz et al., 2002; French, 1938; Lon-Wo et al., 2002; Ogunji et al., 2003; Oyenuga, 1968; Ravindran et al., 1994

Last updated on 24/10/2012 00:45:17

References

References

Aboh, A. B. ; Olaafa, M. ; Dossou-Gbété, G. S. O. ; Dossa, A. D. ; Djagoun, N., 2002. Voluntary ingestion and apparent digestibility of a ration based on Mucuna pruriens var. utilis seeds flour completed with forage on rabbits. Tropicultura, 20 (4): 165-169 web icon
Aderolu, A. Z. ; Akpabio, V. M., 2009. Growth and economic performance of Clarias gariepinus juveniles fed diets containing velvet bean, Mucuna pruriens, seed meal. Afr. J. Aquatic Sci., 34 (2):131-135 web icon
Adjolohoun, S., 2008. Yield, nutritive value and effects on soil fertility of forage grasses and legumes cultivated as ley pastures in the Borgou region of Benin. Thèse Faculté Universitaire des Sciences Agronomiques de Gembloux web icon
Agbede, J. O. ; Aleto, V. A., 2005. Studies of the chemical composition and protein quality evaluation of differently processed Canavalia ensiformis and Mucuna pruriens seed flours. J. Food Comp. Anal., 18 (1): 89-103 web icon
Akinmutimi, A. H. ; Okwu, N. D., 2006. Effect of quantitative substitution of cooked Mucuna utilis seed meal for soybean meal in broiler finisher diet. Int. J. Poult. Sci., 5 (5): 477-481 web icon
Ani, A. O., 2008. The feeding value of processed velvet bean (Mucuna pruriens) for pullets chicks. J. Trop. Agric. Food Environ. Ext., 7 (2): 149-155 web icon
Armstrong, K. L. ; Albrecht, K. A. ; Lauer, J. G. ; Riday, H., 2008. Intercropping corn with lablab bean, velvet bean, and scarlet runner bean for forage. Crop Science, 48 (1): 371-379 web icon
Axtmayer, J. H. ; Rivera Hernandez, G. ; Cook, D. H, 1938. The nutritive value of some forage crops of Puerto Rico. II. Legumes, grasses and mixtures. J. Agric. Univ. P. Rico, 22 (4): 445-461
Ayala-Burgos, A.J. ; Herrera-Díaz, P.E. ; Castillo-Caamal, J.B. ; Rosado-Rivas,C.M. ; Osornio-Muñoz, L. ; Castillo-Caamal, A.M., 2003. Rumen degradability and chemical composition of the velvet bean (Mucuna spp.) grain and husk. Trop. Subtrop. Agroecosyst., 1 (2-3):71-75 web icon
Baligar, V. C. ; Fageria, N. K., 2007. Agronomy and physiology of tropical cover crops. J. Plant Nutr., 30 (8): 1287-1339 web icon
Behura, N. C. ; Sahoo, N. ; Satpathy, S., 2006. Antinematodal activity of pod hairs of Mucuna prurita in buffalo calves. Ind. Vet. J., 83 (6): 673-674
Bien-Aimé, A. ; Denaud, L., 1989. Velvet bean leaves and sugarcane juice for rabbit supplementation in Haiti. Livest. Res. Rural Dev., 1 (1): 31-35 web icon
Buckles, D. ; Triomphe, B. ; Sain, G., 1998. Cover crop in hillside agriculture: farmer innovation with Mucuna. IDRC/CIMMYT 1998 web icon
Buckles, D. ; Triomphe, B., 1999. Adoption of mucuna in the farming systems of northern Honduras. Agroforestry Systems, 47: 67–91 web icon
Carew, L. B. ; Gernat, A. G., 2006. Use of velvet beans, Mucuna spp., as a feed ingredient for poultry: a review. World Poult. Sci. J., 62: 131-144 web icon
Castillo-Caamal, A. M. ; Castillo-Caamal, J. B. ; Ayala-Burgos, A. J., 2003. Mucuna bean (Mucuna spp.) supplementation of growing sheep fed with a basal diet of napier grass (Pennisetum purpureum). Trop. Subtrop. Agroecosyst., 1 (2-3): 107-111 web icon
Castillo-Caamal, J.B. ; Jiménez-Osornio, J.J. ; López-Pérez, A. ; Aguilar-Cordero, W. ; Castillo-Caamal, A.M., 2003. Feeding Mucuna beans to small ruminants of mayan farmers in the Yucatán peninsula. Trop. Subtrop. Agroecosyst., 1 (2-3): 113-117 web icon
Cerighelli, R. ; Busson, F. ; Toury, J. ; Bergeret, B., 1960. Contribution à l'étude chimique de quelques légumineuses tropicales utilisées dans l'alimentation. Ann. Nutr. Alim., 14: 161-164
Chikagwa-Malunga, S. K. ; Adesogan, A. T. ; Sollenberger, L. E. ; Badinga, L. K. ; Szabo, N. J. ; Litell; R. C., 2009. Nutritional characterization of Mucuna pruriens. 1. Effect of maturity on the nutritional quality of botanical fractions and the whole plant. Anim. Feed Sci. Technol., 148: 34-50 web icon
Chikagwa-Malunga, S. K. ; Adesogan, A. T. ; Sollenberger, L. E. ; Badinga, L. K. ; Szabo, N. J. ; Litell; R. C., 2009. Nutritional characterization of Mucuna pruriens. 2. In vitro ruminal fluid fermentability of Mucuna pruriens, Mucuna L-dopa and soybean meal incubated with or without L-dopa. Anim. Feed Sci. Technol., 148: 51-67 web icon
Chikagwa-Malunga, S. K. ; Adesogan, A. T. ; Szabo, N. J. ; Litell; R. C. ; Phatak, S. C. ; Kima, S. C. ; Arriola, K. G. ; Huisden, C. M. ; Dean, D. B. ; Krueger, N. A., 2009. Nutritional characterization of Mucuna pruriens. 3. Effect of replacing soybean meal with Mucuna on intake, digestibility, N balance and microbial protein synthesis in sheep. Anim. Feed Sci. Technol., 148: 107-123 web icon
Chikagwa-Malunga, S. K. ; Adesogan, A. T. ; Sollenberger, L. E. ; Phatak, S. C. ; Szabo, N. J. ; Kima, S. C. ; Huisden, C. M. ; Litell, R. C., 2009. Nutritional characterization of Mucuna pruriens. 4. Does replacing soybean meal with Mucuna pruriens in lamb diets affect ruminal, blood and tissue l-dopa concentrations?. Anim. Feed Sci. Technol., 148: 124-137 web icon
Cino, D. M.; Diaz, M. F.; Lon-Wo, E., Gonzalez, A., 1999. Economical evaluation of raw legume grain meals and their potential use in poultry feeding. Rev. Cubana Cienc. Agric., 33 (3): 127-133
Contreras-Govea, F. E. ; Muck, R. E. ; Armstrong, K. L. ; Albrecht, K. A., 2009. Nutritive value of corn silage in mixture with climbing beans. Anim. Feed Sci. Technol., 150: 1-8 web icon
Cook, B. G. ; Pengelly, B. C. ; Brown, S. D. ; Donnelly, J. L. ; Eagles, D. A. ; Franco, M. A. ; Hanson, J. ; Mullen, B. F. ; Partridge, I. J. ; Peters, M. ; Schultze-Kraft, R., 2005. Tropical forages. CSIRO, DPI&F(Qld), CIAT and ILRI, Brisbane, Australia web icon
Dahouda, M. ; Toleba, S. S. ; Youssao, A. K. I. ; Mama Ali, A. A. ; Dangou-Sapoho, R. K. ; Ahounou, S. G. ; Hambuckers, A. ; Hornick, J-L., 2009. The Effects of Raw and Processed Mucuna pruriens Seed Based Diets on the Growth Parameters and Meat Characteristics of Benin Local Guinea Fowl (Numida meleagris, L). Int. J. Poult. Sci., 8 (9): 882-889 web icon
Dahouda, M. ; Toléba, S. S. ; Senou, M. ; Youssao, A. K. I. ; Hambuckers, A. ; Hornick J-L., 2009. Les ressources alimentaires non-conventionnelles utilisables pour la production aviaire en Afrique : valeurs nutritionnelles et contraintes. Ann. Méd. Vét., 153 (1): 5-21 web icon
Del Carmen, J. ; Gernat, A. G. ; Myrman, R. ; Carew, L. B., 1999. Evaluation of raw and heated velvet beans (Mucuna pruriens) as feed ingredients for broilers. Poult. Sci., 78 (6): 866-872 web icon
Deshpande, S. S. ; Damodaran, S., 1989. Structure-Digestibility relationship of legume 7S proteins. J. Food Sci., 54: 108-113 web icon
Devendra, C. ; Göhl, B. I., 1970. The chemical composition of Caribbean feedingstuffs. Trop. Agric. (Trinidad), 47 (4): 335
Dovonou, H. ; Gokou, G. ; Adounkpé, R., 1998. Dynamique de la culture de Mucuna pruriens dans la commune rurale de Gakpé, au Bénin. In: Cover crops in West Africa contributing to sustainable agriculture. Buckles, D.; Eteka, A.; Osiname, O.; Galiba, M.; Galiano, G. (Eds). International development research Center, Ottawa, Canada web icon
Ecocrop, 2011. Ecocrop database. FAO web icon
Eilittä, M. ; Carsky, R. J., 2003. Efforts to improve the potential of Mucuna as a food and feed crop: background to the workshop. Trop. Subtrop. Agroecosyst., 1: 47-55 web icon
Emenalom, O. O. ; Udedibie, A. B. I. ; Esonu, B. O. ; Etuk, E. B. ; Emenike, H. I., 2004. Evaluation of unprocessed and cracked, soaked and cooked velvet beans (Mucuna pruriens) as feed ingredients for pigs. Livest. Res. Rural Dev., 16: 33 web icon
Emenalom, O. O. ; Udedibie, A. B. I., 2005. Evaluation of different heat processing methods on the nutritive value of Mucuna pruriens (Velvet bean) seed meals for broilers. Int. J. Poult. Sci., 4 (8): 543-548 web icon
Emenalom, O. O. ; Udedibie, A. B. I. ; Esonu, B. O. ; Etuk, E. B., 2005. Evaluation of processed velvet bean (Mucuna pruriens) as a feed ingredient in starter diets for broiler chickens. Japan. J. Poult. Sci., 42 (4): 301-307 web icon
Emenalom, O. O. ; Udedibie, A. B. I. ; Esonu, B. O. ; Etuk, E. B., 2006. Cooking in local alkaline solution as a method for improving the nutritive value of velvet bean (Mucuna pruriens) for broilers. In: Rege, J. E. O.; Nyamu, A. M.; Sendalo, D. (eds). The role of biotechnology in animal agriculture to address poverty in Africa: opportunities and challenges. Proc. 4th All Africa Conf. on Animal Agriculture and 31st annual meeting of Tanzania Soc. for Animal Production, Arusha, Tanzania, 20–24 Sept. 2005. TSAP and Nairobi: ILRI. 239-245 web icon
Emiola, A. I.; Ologhobo, A. D.; Gous, R. M., 2007. Influence of processing of mucuna (Mucuna pruriens var utilis) and kidney bean (Phaseolus vulgaris) on the performance and nutrient utilization of broiler chickens. J. Poult. Sci., 44 (2): 168-174 web icon
FAO, 2011. Grassland Index. A searchable catalogue of grass and forage legumes. FAO web icon
Farougou, S. ; Kpodekon, M. ; Tokannou, R. ; Djossou, V. D. ; Akoutey, A. ; Youssao, I. A. K., 2006. Utilisation de la farine de Mucuna pruriens (L.) DC dans l’aliment de croissance des pintades (Numida meleagris). Revue Méd. Vét., 157 (10): 502-508 web icon
Ferriera, H. A. ; Peña, B. K. ; Gernat, A. G. ; Carew, L. B. ; Matamoros, I. A., 2003. Evaluation of different processing methods of velvet bean (Mucuna pruriens) for use as a feed ingredient for broilers. Trop. Subtrop. Agroecosyst., 1 (2-3): 277-286 web icon
Flores, M., 1992. El Uso del Frijol de Abono (Mucuna Spp.) Como Cultivo de Cobertura en Plantaciones de Cítricos. Informe Tecnico, 7. CIDICCO (Centro Internacional de Información Sobre Cultivos de Cobertura), Honduras. web icon
Flores, M., 1993. El uso del frijol terciopelo por agricultores de la costa norte de Honduras para producir maíz. Informe Técnico, 1. 2a edicion, CIDICCO (Centro Internacional de Informacion sobre cultivos de cobertura) web icon
French, M. H., 1938. The nutritive value of velvet beans. Rep. vet. Dep., Tanganyika, p. 43-45
Göhl, B., 1982. Les aliments du bétail sous les tropiques. FAO, Division de Production et Santé Animale, Roma, Italy web icon
Harms, R. H. ; Simpson, C. F. ; Waldroup, P. W., 1961. Influence of feeding various levels of velvet beans to chicks and laying hens. J. Nutr., 75 (1): 127-131 web icon
Hellin, J., 2006. Better land husbandry: from soil conservation to holistic land management. Land reconstruction and management. Science Publishers web icon
Hertrampf, J. W. ; Piedad-Pascual, F., 2000. Handbook on ingredients for aquaculture feeds. Kluwer Academic Publishers, 624 pp. web icon
ILRI, 2004. Sustainable crop - livestock production for improved livelihoods and natural resource management in West Africa. Proceedings of an international conference held at the International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria, 19-22 November 2001 web icon
Iyayi, E. A. ; Taiwo, V. O., 2003. The effect of incorporating Mucuna (Mucuna pruriens) seed meal on the performance of laying hens and broilers. Trop. Subtrop. Agroecosyst., 1 (2-3): 239-246 web icon
Iyayi, E. A. ; Kluth, H. ; Rodehutscord, M., 2006. Precaecal crude protein digestibility, organs relative weight and performance in broilers fed diets containing Enterolobium cyclocarpum and Mucuna pruriens seed flour in place of soybean meal. Arch. Geflügelk., 70 (4): 161-167 web icon
Iyayi, E. A. ; Kluth, H. ; Rodehutscord, M., 2006. Chemical composition, antinutritional constituents, precaecal crude protein and amino acid digestibility in three unconventional tropical legumes in broilers. J. Sci. Food Agric., 86 (13): 2166-2171 web icon
Iyayi, E. A. ; Kluth, H. ; Rodehutscord, M., 2008. Effect of heat treatment on antinutrients and precaecal crude protein digestibility in broilers of four tropical crop seeds. Int. J. Food Sci. Technol., 43 (8): 610-616 web icon
Juma, H. K. ; Abdulrazak, S. A. ; Muinga, R. W. ; Ambula, M. K., 2006. Evaluation of Clitoria, Gliricidia and Mucuna as nitrogen supplements to Napier grass basal diet in relation to the performance of lactating Jersey cows. Livest. Sci., 103: 23-29 web icon
Lizama, W. T. ; Ricalde, R. S. ; Belmar, R. ; Anderson, S. ; Sundrum, A., 2003. Digestibility and nitrogen retention in creole pigs and improved breed of pigs fed with maize and mucuna beans in peasent systems in South Mexico. Deutscher Tropentag, October 8-10, 2003, Göttingen. Technological and institutional innovations for sustainable rural development, Göttingen, Germany web icon
Lorenzetti, F. ; MacIsaac, S. ; Arnason, J. T. ; Awang, D. V. C. ; Buckles, D., 1998. The phytochemistry, toxicology, and food potential of velvetbean (Mucuna Adans. spp., Fabaceae). In: Cover crops in West Africa contributing to sustainable agriculture. Buckles, D.; Eteka, A.; Osiname, O.; Galiba, M.; Galiano, G. (Eds). International development research Center, Ottawa, Canada web icon
Mapiye, C. ; Mwale, M. ; Mupangwa, J. F. ; Mugabe, P. H. ; Poshiwa, X. ; Chikumba, N., 2007. Utilisation of ley legumes as livestock feed in Zimbabwe. Trop. Grassl., 41: 84-91 web icon
Martinez Perez , M. ; Sarmiento Franco, L. ; Santos Ricalde, R. ; Rodriguez Alonso, Z. ; Capetillo leal, C. ; Savon Valdes, L. ; Segura Correa, J., 2008. Protein and Amino Acid Apparent Ileal Digestibility in Broilers Fed Mucuna (Mucuna deeringiana [Bort Merr.]) Foliage Meal in the Diet. J. Anim. Vet. Adv., 7 (6): 669-672 web icon
Matenga, V. R. ; Ngongoni, N. T. ; Titterton, M. ; Maasdorp, B. V., 2003. Mucuna seed as a feed ingredient for small ruminants and effect of ensiling on its nutritive value. Trop. Subtrop. Agroecosyst., 1 (2-3): 97-105 web icon
Mbuthia, E. W. ; Gachuiri, C. K., 2003. Effect of inclusion of Mucuna pruriens and Dolichos lablab forage in napier grass silage on silage quality and on voluntary intake and digestibility in sheep. Trop. Subtrop. Agroecosyst., 1 (2-3): 123-128 web icon
Mendoza-Castillo, H. ; Castillo-Caamal, J. B. ; Ayala-Burgos, A., 2003. Impact of Mucuna bean (Mucuna spp.) Supplementation on milk production of goats. Trop. Subtrop. Agroecosyst., 1 (2-3): 93-96 web icon
Miller, I. L., 2000. Cow Itch or Pica-pica. Agnote web icon
Muinga, R. W. ; Saha, H. M. ; Mureithi, J. G., 2003. The effect of mucuna (Mucuna pruriens) forage on the performance of lactating cows. Trop. Subtrop. Agroecosyst., 1 (2-3): 87-91 web icon
Mureithi, J. G. ; Gachene, C. K. K. ; Wamuongo, J. L. W., 2003. Legume cover crops research in Kenya: experiences of the legume research network project: highlights of phases 1 research activities (1994-2000). KARI Technical Note Series, 12 web icon
Murungweni, E. C. ; Mabuku, O. ; Manyawu, G. J., 2004. Mucuna, Lablab and Paprika Calyx as Substitutes for Commercial Protein Sources used in Dairy and Pen-fattening Diets by Smallholder Farmers of Zimbabw. In: Tropical legumes for sustainable farming systems in southern Africa and Australia, Whitbread, A. M.; Pengelly. B. C. (Eds). ACIAR Proceedings No. 115 web icon
Naik, A. H., 1967. Chemical composition of Tanzania feedingstuffs. E. Afr. Agric. For. J., 32 (2): 201-205
Nyambati, E. M. ; Sollenberger, L. E. ; Kuncle, W. E., 2003. Feed intake and lactation performance of dairy cows offered napier grass supplemented with legume hay. Livest. Prod. Sci., 83: 179–189 web icon
Nyirenda, D. ; Musukwa, M. ; Jonsson, L. O., 2003. The effects of different processing methods of velvet beans (Mucuna pruriens) on L-dopa content, proximate composition and broiler chicken performance. Trop. Subtrop. Agroecosyst., 1 (2-3): 253-260 web icon
Obeid, J. A. ; Cruz, M. E., 1989. Corn crop grown with and without tropical legumes for silage making. Proceedings of the XVI International Grassland Congress, 4 11 October 1989, Nice, France. 1989, 959 960
Ogunji, J. O. ; Wirth, M. ; Osuigwe, D. I., 2003. Nutrient composition of some tropical legumes capable of substituting fish meal in fish diets. J. Agric. Rural Dev. Trop. Subtrop. (Der Tropenlandwirt), 104 (2): 143-148 web icon
Oyenuga, V. A., 1968. Nigeria's foods and foodstuffs. Ibadan, University Press
Pengelly, B. C. ; Whitbread, A. ; Mazaiwana, P. R. ; Mukombe, N. ; , 2004. Tropical forage research for the future - Better use of research resources to deliver adoption and benefits to farmers. In: Tropical legumes for sustainable farming systems in southern Africa and Australia. Whitbread, A. M. and Pengelly, B. C. (Eds). ACIAR, Canberra web icon
Pérez-Hernandez, F. ; Ayala-Burgos, A. J. ; Belmar-Casso, R., 2003. Performance of growing lambs supplemented with Mucuna pruriens. Trop. Subtrop. Agroecosyst., 1: 119-122 web icon
Prasad, S. K. ; Qureshi, T. N. ; Qureshi, S., 2008. Mucuna pruriens seed powder feeding influences reproductive conditions and development in Japanese quail Coturnix coturnix japonica. Animal, 3 (2): 261-268. web icon
Pugalenthi, M. ; Vadivel, V. ; Siddhuraju, P, 2005. Alternative Food/Feed Perspectives of an Underutilized Legume Mucuna pruriens var. Utilis—A Review. Plant Foods Hum. Nutr., 60: 201–218 web icon
Rackis, J. J. ; Wolf, W. J. ; Baker, E. C., 1986. Protease inhibitor in plant foods: content and inactivation. In: Nutritional and toxicological significance of enzyme inhibitors in foods Ed:Mendel Friedman Plenum Publishing Corporation web icon
Ravindran, V., 1988. Observations on the forage potential of velvet bean. J. Natn. Sci. Coun. Sri Lanka. 16 (2): 175-181 web icon
Sandoval Castro, C. A. ; Herrera, P. ; Capetillo Leal, C. M.;Ayala Burgos, A. J., 2002. In vitro gas production and digestibility of mucuna bean. Trop. Subtrop. Agroecosyst., 1 (2-3): 77-80 web icon
Savon, L. ; Scull, I. ; Orta, M. ; Torres, V., 2004. Physicochemical characterization of the fibrous fraction of five tropical foliage meals for monogastric species. Cuban J. Agric. Sci., 38 (3)
Siddhuraju, P. ; Becker, K. ; Makkar, H. P. S., 2000. Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an under-utilized tropical legume, Mucuna pruriens Var. Utilis. J. Agric. Food Chem., 48: 6048-6060 web icon
Siddhuraju, P. ; Becker, K., 2001. Preliminary nutritional evaluation of Mucuna seed meal (Mucuna pruriens var. utilis) in common carp (Cyprinus carpio L.): an assessment by growth performance and feed utilisation. Aquaculture, 196 (1-2):105-123 web icon
Siddhuraju, P. ; Becker, K., 2002. Effect of phenolic nonprotein amino acid L-dopa (L-3,4-dihydroxyphenylalanine) on growth performance, metabolic rates and feed nutrient utilization of common carp (Cyprinus carpio L.). Aquacult. Nutr., 8 (1): 69-77 web icon
Siddhuraju, P. ; Becker, K., 2003. Comparative nutritional evaluation of differentially processed mucuna seeds [Mucuna pruriens (L.) DC. var. utilis (Wall ex Wight) Baker ex Burck] on growth performance, feed utilization and body composition in Nile tilapia (Oreochromis niloticus L.). Aquacult. Res., 34 (6): 487-500 web icon
Siddhuraju, P. ; Becker, K., 2005. Nutritional and antinutritional composition, in vitro amino acid availability, starch digestibility and predicted glycemic index of differentially processed mucuna beans (Mucuna pruriens var. utilis): an under-utilised legume. Food Chem., 91: 275–286 web icon
Sidibé-Anago, A. G. ; Ouedraogo, G. A. ; Kanwé, A. B. ; Ledin, I., 2009. Foliage yield, chemical composition and intake characteristics of three Mucuna varieties. Trop. Subtrop. Agroecosyst., 10: 75-84 web icon
Smith, O. B. ; Idowu, O. A. ; Asaolu, V. O. ; Odunlami, O, 1991. Comparative rumen degradability of forages, browse, crop residues and agricultural by products. Livest. Res. Rural Dev., 3 (2): 59-66 web icon
Sridhar, K. R. ; Bhat, R., 2007. Agrobotanical, nutritional and bioactive potential of unconventional legume - Mucuna. Livest. Res. Rural Dev., 19: 126 web icon
Szabo, N. J., 2003. Indolealkylamines in Mucuna pruriens. Trop. Subtrop. Agroecosyst., 1: 295-307 web icon
Taiwo, A. A. ; Adejuyigbe, A. D. ; Talabi, E. O. ; Okumakuma, G. ; Adebowale, E. A., 2006. Effect of raw and cooked mucuna seed meal based diets on the performance, nutrient digestibility and haematology of weaned rabbits. Nigerian J. Anim. Prod., 33 (1-2): 209-215
Takahashi, M. ; Ripperton, J. C., 1949. Koa haole (Leucaena glauca): its establishment, culture, and utilization as a forage crop. Hawaii Agric. Exp. Sta. Bull., 100
Tracy, S. M. ; Coe, H. S., 1918. Velvet beans. United States Department of Agriculture, Washington, DC, USA. Farmers Bulletin 962
Trejo, L. W. ; Santos, R. ; Hau, E. ; Olivera, L. ; Anderson, S. ; Belmar R., 2004. Utilisation of mucuna beans (Mucuna pruriens (L.) DC ssp. deeringianum (Bart) Hanelt) to feed growing broilers. J. Agric. Rural Develop. Tropics Subtropics, 105 (2): 155-164 web icon
Tuleun, C. D. ; Igba, F., 2008. Growth and carcass characteristics of broiler chickens fed water soaked and cooked velvet bean (Mucuna utilis) meal. Afr. J. Biotech., 7 (15): 2676-2681 web icon
Tuleun, C. D. ; Carew, S. N. ; Ajiji, I., 2008. Feeding value of velvet beans (Mucuna utilis) for laying hens. Livest. Res. Rural Dev., 20 (5) web icon
Tuleun, C. D. ; Igyem, S. Y. ; Adenkola, A. Y., 2009. The feeding value of toasted mucuna seed meal diets for growing Japanese quail (Coturnix coturnix japonica). Int. J. Poult. Sci., 8 (11): 1042-1046 web icon
Tuleun, C. D. ; Patrick, J. P. ; Tiamiyu, L. O., 2009. Evaluation of raw and boiled velvet bean (Mucuna utilis) as feed ingredient for broiler chickens. Pakistan J. Nutr., 8 (5): 601-606 web icon
Tuleun, C. D. ; Offia, B. ; Yaakugh, I. D. I., 2010. Comparative performance of broiler fed diets containing raw and processed mucuna seed meal. Int. J. Poult. Sci., 9 (11): 1056-1062 web icon
Tuleun, C. D. ; Dashe, N. A., 2010. Effect of dietary levels of toasted mucuna seed meal (TMSM) on the performance and egg quality parameters of laying Japanese quails (Coturnix coturnix japonica). Int. J. Poult. Sci., 9 (12): 1092-1096 web icon
Ukachukwu, S. N. ; Obioha, F. C. ; Madubuike, R. C., 1999. Determination of the true metabolizable energy (TME) of raw and heat-treated Mucuna cochinchinensis using adult broilers. Trop. J. Anim. Sci., 3 (1): 25-31 web icon
Ukachukwu, S. N. ; Szabo N. J., 2003. Effect of processing, additives and vitamin B6 supplementation of Mucuna pruriens var cochinchinensis on broilers. Trop. Subtrop. Agroecosyst., 1 (2-3): 227-237 web icon
Ukachukwu, S. N. ; Obioha, F. C., 2007. Effect of processing methods on the nutritional value of Mucuna cochinchinensis to broiler chicks. Aust. J. Exp. Agric., 47 (2): 125-131. web icon
Ukachukwu, S. N. ; Uzoech, S. O. ; Obiefuna, J. N., 2007. Aspects of growth performance and nutrient retention of starter broilers fed Mucuna cochinchinensis-based diets supplemented with methionine. Aust. J. Exp. Agric., 47 (2): 132-135 web icon
Ukachukwu, S. N., 2007. Optimum inclusion and replacement value of boiled Mucuna cochinchinensis for soybean meal in broiler diets. Aust. J. Exp. Agric., 47 (6): 672-676. web icon
US Forest Service, 2011. Mucuna pruriens (L.) DC.. Pacific Island Ecosystems at Risk (PIER) web icon
Vadivel, V. ; Pugalenthi, M., 2007. Biological value and protein quality of raw and processed seeds of Mucuna pruriens var. utilis. Livest. Res. Rural Dev., 19 (7): 97
Vadivel, V. ; Pugalenthi, M., 2010. Studies on the incorporation of velvet bean (Mucuna pruriens var. utilis) as an alternative protein source in poultry feed and its effect on growth performance of broiler chickens. Trop. Anim. Health Prod., 42 (7): 1367-1376 web icon
Vadivel, V. ; Pugalenthi, M. ; Doss, M. ; Parimelazhagan, T., 2011. Evaluation of velvet bean meal as an alternative protein ingredient for poultry feed. Animal, 5 (1): 67-73 web icon
van Eys, J. E. ; Offner, A. ; Back, A., 2004. Manual of quality analyses for soybean products in the feed industry. American soybean association web icon
Walker, C. A., 1975. Personal communication. Central Research Station, Mazabuka, N. Rhodesia
Wolf, B. ; Snyder, G. H., 2003. Sustainable soils: the place of organic matter in sustaining soils and their productivity. Routledge, Taylor & Francis Group web icon
Wulijarni-Soetjipto, N. ; Maligalig, R. F., 1997. Mucuna pruriens (L.) DC. cv. group Utilis. Record from Proseabase. Faridah Hanum, I ; van der Maesen, L.J.G. (Editors). PROSEA (Plant Resources of South-East Asia) Foundation, Bogor, Indonesia web icon