Support Feedipedia

Automatic translation

Who is visiting Feedipedia?


Editor area

Cowpea (Vigna unguiculata) seeds

Description and recommendations

Common names

Cowpea, asparagus bean, black-eyed pea, catjang, catjang cowpea, Chinese long bean, clay pea, cow-pea, cream pea, crowder pea, pea bean, purple-hull pea, southern pea, sow pea, yard-long bean [English]; dolique asperge, dolique mongette, haricot asperge, haricot indigène, niébé, pois à vaches [French]; feijão-espargo, feijão-fradinho [Portuguese]; costeño, frijol de costa, judía catjang, judía espárrago, rabiza [Spanish]; اللوبياء [Arabic]; adua, ayi, too, tipielega, yo, tuya, saau [Ghana]; wake, ezo, nyebbe, ngalo, azzo, dijok, alev, arebe, lubia, mongo, ewa, akedi, akoti [Nigeria]; kunde [Swahili]; Kedesche, sona, kadje, tombing, isanje [Togo]; imbumba, indumba, isihlumaya [Zulu]; kacang bol, kacang merah, kacang toonggak, kacang béngkok [Indonesian]; đậu dải, đậu dải trắng rốn nâu [Vietnamese]

  • Cowpeas, cowpea seeds, cowpea beans
  • Cowpea seed waste, cowpea hulls


Dolichos biflorus L., Dolichos catjang Burm. f., Dolichos hastifolius Schnizl., Dolichos lubia Forssk., Dolichos melanophtalmus DC., Dolichos melanophthalamus DC., Dolichos monachalis Brot., Dolichos obliquifolius Schnizl., Dolichos sinensis L., Dolichos tranquebaricus Jacq., Dolichos unguiculatus L., Liebrechtsia scabra De Wild., Phaseolus sphaerospermus L., Phaseolus unguiculatus (L.) Piper, Vigna brachycalyx Baker f., Vigna catjang (Burm. f.) Walp., Vigna catjiang (Burm. f.) Walp., Vigna scabra (De Wild.) T. Durand & H. Durand, Vigna scabrida Burtt Davy, Vigna sinensis (L.) Savi ex Hausskn., Vigna sinensis (L.) Savi ex Hausskn. var. catiang sensu Chiov., Vigna sinensis (L.) Savi ex Hausskn. subsp. sinensis (L.) Hassk., Vigna sinensis (L.) Savi ex Hausskn. var. spontanea Schweinf., Vigna unguiculata (L.) Walp., Vigna unguiculata (L.) Walp. subsp. dekindtiana sensu Verdc. (ILDIS, 2009)


Cowpea (Vigna unguiculata (L.) Walp.) is one of the most popular grain legumes in Africa as well as in some regions of America and Asia. The main subspecies is Vigna unguiculata (L.) Walp. subsp. unguiculata (L.) Walp. Cowpea is often called "black-eyed pea" due to its black- or brown-ringed hylum. Cowpea is called the "hungry-season crop" because it is the first crop to be harvested before the cereal crops (Gomez, 2004). Its fresh or dried seeds, pods and leaves are commonly used as human food. Since they are highly valuable as food, cowpeas are only occasionally used to feed livestock but the hay and silage can be an important fodder. Cowpea has great flexibility in use: farmers can choose to harvest them for grains or to harvest forage for their livestock, depending on economical or climatological constraints (Gomez, 2004). Dual-purpose varieties have been developed in order to provide both grain and fodder while suiting the different cropping systems encountered in Africa (Tarawali et al., 1997). Cowpea by-products such as cowpea seed waste and cowpea hulls (which result from the dehulling of the seeds for food) have been used to replace conventional feedstuffs in some developing countries (Ikechukwu, 2000).


Cowpea is native to Central Africa. It is widespread throughout the tropics and most tropical areas between 40°N to 30°S and below an altitude of 2000 m (Ecocrop, 2009). Cowpea is grown in over 2/3 of the developing world as a companion or relay crop with major cereal (Tarawali et al., 1997). In 1996, the estimated world total area was about 12 million ha, and Africa alone accounted for over 8 million ha, of which about 70% were in West and Central Africa (Singh et al., 1996). In other areas, notably in Australia and Asia, cowpea is primarily a fodder crop and used for green manure or as a cover crop (Tarawali et al., 1997).

Cowpea grows in savannah vegetation at temperatures ranging from 25°C to 35°C and in areas where annual rainfall ranges from 750 mm to 1100 mm (Madamba et al., 2006). Cowpea is tolerant of shading and can be combined with tall cereal plants such as sorghum and maize (FAO, 2013). Cowpea grows on a wide range of soils provided they are well drained (Madamba et al., 2006). It is sensitive to waterlogging, though less than other legumes (Ecocrop, 2009). High moisture may hinder cowpea crops in the sub-humid tropics due to the many diseases they are susceptible to (Tarawali et al., 1997).

Potential constraints

Cowpeas contain antinutritional factors including lectins, trypsin inhibitors and tannins (Makinde et al., 1997). In cowpea flour, lipoxygenase activity results in higher free fatty acids and fat acidity, decreasing storage stability and product quality (bitterness and "beany" taste) (Kasirye-Alemu, 1980). Treatments such as autoclaving have been proposed to alleviate this problem and increase the suitability of cowpea flour for human food (Prinyawiwatkula et al., 1996). There are no published reports on the effects of lipoxygenase activity on the nutritive value of feeds based on cowpeas (2012).

Tables of chemical composition and nutritional value


Cowpea seeds

In a comparison of several legume seeds in the Southern Great Plains of the USA, the protein and in vitro digestible DM of cowpeas indicated that they could be efficient replacements for maize or cottonseed meal in livestock diets, assuming that cowpea could generate enough grain biomass to be cost-effective. Though not as efficient as soybean as a protein source, cowpea was capable of accumulating useful levels of protein and digestible dry matter under the variable growing conditions of the study (Rao et al., 2009). Cowpeas replacing 100% of groundnut cake in growing lamb diets had a positive effect on roughage intake and growth performance (Singh et al., 2006). Supplementation with cowpeas of sheep fed low quality roughages resulted in higher dry matter intake and organic matter digestibility (Paduano et al., 1995). Cowpeas used as a source of urease on buffalo male calves fed urea treated straw resulted in increased body weight gain and dry matter digestibility (Sarwar et al., 1995).

Cowpea seed waste

Cowpea seed waste successfully replaced groundnut cake, corn bran or wheat offal in goat diets (Olubunmi et al., 2005).


Raw cowpea seeds

Raw cowpeas caused lower growth performance in weaner pigs, which may be due to antigenic factors causing damage to the intestinal mucosa (Makinde et al., 1997). However, the introduction of creep feeding before weaning had some ameliorative effects (Makinde et al., 1997).

Processed cowpea seeds

Physical treatment such as dry fractionation or heating of cowpea beans may alleviate antinutritional problems in weaner pigs (Makinde et al., 1996). Soaked and crushed cowpea beans ensiled with sow milk bacteria were a valuable feed for weanling pigs (Martens et al., 2012).


Cowpea seeds

It is recommended to process cowpea seeds to decrease the antinutritional factors before feeding the seeds to poultry. Dried and ground cowpeas included at 16% in starter broiler diets had no negative effects (Trompiz et al., 2002). Cooked and sun-dried cowpea seeds included at up to 20% in the diet did not have deleterious effects on live-weight gain, feed conversion ratio, feed cost/kg live-weight and carcass quality (Chakam et al., 2010). Dehulling, combined dehulling and roasting, or the addition of enzymes increased feed intake, body weight gain and protein intake when processed cowpeas were included at 15% in chicken diets (Belal et al., 2011). Boiled cowpeas could replace meat meal in broilers when included at 11% in starter diets and at 14% in finisher diets. Broilers finished with cowpea had a higher carcass yield (Defang et al., 2008). Sun-dried cowpeas successfully replaced 75% of soybean meal in broiler diets (Lon-Wo et al., 2000). In both cases, feed cost was significantly reduced. The general conclusion is that inclusion of processed cowpeas is feasible up to 15-20% in broiler diets but deleterious at higher levels. In Sudan, however, the inclusion of 30% (raw?) cowpeas, partially replacing groundnut meal and sorghum, improved weight gain, feed conversion ratio, dressing percentage and carcass quality (Eljack et al., 2009).

Cowpea hulls

Though they result in lower animal performance because of their high fibre content, cowpea hulls are inexpensive potential feedstuffs and have been assessed as a replacer of conventional feedstuffs in poultry diets. Cowpea hulls were used to replace defatted soybean meal in diets for geese. Though increasing levels of cowpea hulls decreased overall performance, it was possible to include up to 25% cowpea hulls in diets for ganders (Ningsanond et al., 1992). For starter and finisher broilers, cowpea hulls were used to replace maize offal and maize grain (Ikechukwu, 2000). Chicken fed on raw cowpea hulls had a lower performance than those fed on conventional diets, but inclusion of cowpea hulls at up to 15% in starter and finisher diets was more cost effective than conventional diets (Ikechukwu, 2000).

There have been attempts to reduce fibrousness of cowpea hulls by different physico-chemical treatments such as soaking plus boiling or soaking for 3 days. It was shown that soaking for 3 days reduced fibre content and increased carbohydrates, maybe due to fermentation during soaking (Adebiyi et al., 2010).


Asian sea bass (Lates calcarifer)

White cowpea seeds could be used as a protein source to replace 18% of Asian sea bass diets without affecting growth (Eusebio et al., 2000).



Several forms of cowpea (raw, dehulled, cooked, germinated and extruded) used in Pacific white shrimp (Litopenaeus vannamei) diets were found to be a good source of nutrients. Boiled or extruded seeds had the highest nutritive values (Rivas-Vega et al., 2006). Indian prawns (Fenneropenaeus indicus, formerly Penaeus indicus) fed a soybean meal-based diet, where cowpea seeds replaced 9% of the protein, had a similar weight gain, growth rate and survival rate as those fed the control diet (Eusebio et al., 1998).


Heuzé V., Tran G., 2015. Cowpea (Vigna unguiculata) seeds. A programme by INRA, CIRAD, AFZ and FAO. Last updated on February 12, 2015, 15:15


Tables of chemical composition and nutritional value

Main analysis Unit Avg SD Min Max Nb  
Dry matter % as fed 89.8 1.8 86.2 93.1 35  
Crude protein % DM 24.9 2.0 18.2 28.4 48  
Crude fibre % DM 5.8 1.7 3.1 10.5 38  
NDF % DM 16.6 5.6 9.7 26.7 10  
ADF % DM 6.5 1.5 4.0 8.8 10  
Lignin % DM 0.8 1.0 0.3 3.4 8  
Ether extract % DM 1.6 0.5 0.8 3.2 44  
Ash % DM 4.3 0.8 3.4 6.5 45  
Starch (polarimetry) % DM 47.8 5.9 40.7 55.5 7  
Total sugars % DM 4.6 3.0 0.4 7.1 4  
Gross energy MJ/kg DM 18.6 1.1 17.3 20.8 12 *
Minerals Unit Avg SD Min Max Nb  
Calcium g/kg DM 1.2 0.5 0.5 2.7 28  
Phosphorus g/kg DM 4.0 1.0 1.2 5.2 31  
Potassium g/kg DM 15.0 2.4 12.8 21.5 18  
Sodium g/kg DM 0.1 0.1 0.1 0.2 3  
Magnesium g/kg DM 2.3 0.3 1.9 3.1 18  
Manganese mg/kg DM 20 8 14 32 4  
Zinc mg/kg DM 38 9 24 46 5  
Copper mg/kg DM 9 4 6 14 5  
Iron mg/kg DM 422 623 96 1356 4  
Amino acids Unit Avg SD Min Max Nb  
Alanine % protein 4.2 0.5 3.4 5.1 7  
Arginine % protein 6.7 1.3 5.0 8.7 9  
Aspartic acid % protein 10.4 1.4 9.2 12.7 7  
Cystine % protein 1.1 0.2 0.6 1.4 11  
Glutamic acid % protein 15.8 1.8 14.1 18.7 7  
Glycine % protein 3.9 0.5 3.1 4.8 9  
Histidine % protein 3.3 0.9 2.4 5.1 9  
Isoleucine % protein 4.0 0.7 2.8 5.2 8  
Leucine % protein 7.4 1.6 5.8 11.3 9  
Lysine % protein 6.5 0.6 5.2 7.1 13  
Methionine % protein 1.4 0.2 0.9 1.6 12  
Phenylalanine % protein 5.5 0.6 4.4 6.4 9  
Proline % protein 4.6 0.8 3.8 5.7 6  
Serine % protein 4.9 0.6 3.8 5.6 7  
Threonine % protein 3.8 0.6 3.0 5.3 9  
Tryptophan % protein 1.1   0.9 1.3 2  
Tyrosine % protein 3.0 0.3 2.6 3.6 8  
Valine % protein 4.7 0.6 3.4 5.5 9  
Secondary metabolites Unit Avg SD Min Max Nb  
Tannins (eq. tannic acid) g/kg DM 5.0 3.9 1.3 11.5 7  
Tannins, condensed (eq. catechin) g/kg DM 18.8 18.2 0.0 37.7 4  
Ruminant nutritive values Unit Avg SD Min Max Nb  
OM digestibility, ruminants % 92.2         *
Energy digestibility, ruminants % 90.4         *
DE ruminants MJ/kg DM 16.9         *
ME ruminants MJ/kg DM 13.6         *
Pig nutritive values Unit Avg SD Min Max Nb  
Energy digestibility, growing pig % 81.0         *
DE growing pig MJ/kg DM 15.1         *
MEn growing pig MJ/kg DM 14.4         *
NE growing pig MJ/kg DM 10.4         *
Nitrogen digestibility, growing pig % 72.3       1  
Poultry nutritive values Unit Avg SD Min Max Nb  
AMEn broiler MJ/kg DM 13.4 1.2 12.0 14.1 3  

The asterisk * indicates that the average value was obtained by an equation.


AFZ, 2011; Allan et al., 2000; Cerighelli et al., 1960; CGIAR, 2009; CIRAD, 1991; CIRAD, 2008; Devendra et al., 1970; Garg et al., 2002; Gowda et al., 2004; Jagadi et al., 1987; Kalidass et al., 2012; Katoch, 2013; Khan et al., 1957; Le Dividich et al., 1975; Lim Han Kuo, 1967; Maliboungou et al., 1998; Nell et al., 1992; Nwokolo et al., 1985; Oluyemi et al., 1976; Omogbai, 1990; Owusu-Domfeh et al., 1970; Paduano et al., 1995; Ravindran et al., 1994; Rivas-Vega et al., 2006; Robinson et al., 2001; Sen, 1938; Singh et al., 2006; Tiwari et al., 2006

Last updated on 14/11/2014 14:22:17

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 87.9 5.4 78.9 93.2 9
Crude protein % DM 26.1 1.6 23.7 28.9 11
Crude fibre % DM 4.1 2.1 0.7 7.3 10
NDF % DM 21.3 1
Ether extract % DM 1.7 0.7 0.6 2.6 9
Ash % DM 4.8 2.1 2.9 10.6 11
Starch (polarimetry) % DM 48.5 6.0 41.8 53.2 3
Total sugars % DM 0.4 1
Gross energy MJ/kg DM 19.2 1.8 17.2 21.2 5
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 0.9 0.6 0.3 1.6 4
Phosphorus g/kg DM 2.7 2.6 0.4 5.1 4
Amino acids Unit Avg SD Min Max Nb
Alanine % protein 3.4 1
Arginine % protein 4.6 1
Aspartic acid % protein 9.6 1
Cystine % protein 1.1 1
Glutamic acid % protein 14.1 1
Glycine % protein 3.1 1
Histidine % protein 2.3 1
Isoleucine % protein 2.7 1
Leucine % protein 5.8 1
Lysine % protein 4.9 1
Methionine % protein 1.1 1
Phenylalanine % protein 4.1 1
Proline % protein 4.9 1
Serine % protein 4.3 1
Threonine % protein 2.9 1
Valine % protein 3.4 1
Secondary metabolites Unit Avg SD Min Max Nb
Tannins (eq. tannic acid) g/kg DM 2.4 1
Tannins, condensed (eq. catechin) g/kg DM 0.0 1
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 92.7 *
Energy digestibility, ruminants % 91.0 *
DE ruminants MJ/kg DM 17.5 *
ME ruminants MJ/kg DM 14.1 *
Pig nutritive values Unit Avg SD Min Max Nb
Energy digestibility, growing pig % 83.6 *
DE growing pig MJ/kg DM 16.1 *
MEn growing pig MJ/kg DM 15.3 *
NE growing pig MJ/kg DM 11.1 *
Nitrogen digestibility, growing pig % 78.8 1
Poultry nutritive values Unit Avg SD Min Max Nb
AMEn broiler MJ/kg DM 14.9 1.7 13.0 16.1 3

The asterisk * indicates that the average value was obtained by an equation.


AFZ, 2011; Garg et al., 2002; Le Dividich et al., 1975; Le Dividich, 1973; Nell et al., 1992; Nwokolo et al., 1985; Oluyemi et al., 1976; Rivas-Vega et al., 2006

Last updated on 24/10/2012 00:43:16



Adebiyi, O. A.; Ologhobo, A. D.; Adu, O. A.; Olasehinde, T. O., 2010. Evaluation of the nutritional potentials of physically treated cowpea seed hulls in poultry feed. Emirates J. Food Agric., 22 (3): 232-239 web icon
Anjos, F. R. dos, 2005. Effect of three different diets (baobab, cowpea and papaya) on the dynamic of gastrointestinal helminths and on weight gain in chickens. In: Effect of scavenging feed resource base on the prevalence of parasites and performance of chickens in Sussundenga District, Mozambique. MSc Thesis, Royal Veterinary and Agricultural University Copenhagen, Denmark and Faculty of Veterinary Medicine Eduardo Mondlane University Maputo, Mozambique
Belal, N. G.; Abdelati, K. A.; Albala, S.; Elawad, S., 2011. Effect of dietary processed cowpea (Vigna unguiculata) seeds on broiler performance and internal organ weights. Res. J. Anim. Vet. Sc., 6: 6-11 web icon
Blair Ralns, A., 1963. Grassland Research in Northern Nigeria. 1952 - 62. Misc. pap., Samaru (Nigeria), No. 1, 69 p.
Cameron, A. G., 2003. Forage and grain cowpeas. Agnote, N°E34, Department of Primary Industry, Fisheries and Mines. Northern Territory Government web icon
Chakam, V. P.; Teguia, A.; Tchoumboue, J., 2010. Performance of finisher broiler chickens as affected by different proportions of cooked cowpeas (Vigna unguiculata) in the grower-finisher diet. African J. Food Agric. Nutr. Dev., 10 (4): 2427-2438 web icon
Cino, D. M.; Diaz, M. F.; Lon-Wo, E., Gonzalez, A., 1999. Economical evaluation of raw legume grain meals and their potential use in poultry feeding. Rev. Cubana Cienc. Agric., 33 (3): 127-133
Dada, S. A., 2002. The utilization of water hyacinth (Eichhornia crassipes) by West African dwarf (WAD) growing goats. Afr. J. Biomed. Res., 4: 147-149 web icon
Defang, H. F. ; Teguia, A. ; Awah-Ndukum, J. ; Kenfack, A. ; Ngoula, F. ; Metuge, F., 2008. Performance and carcass characteristics of broilers fed boiled cowpea (Vigna unguiculata L Walp) and or black common bean (Phaseolus vulgaris) meal diets. Afr. J. Biotech., 7 (9): 1351-1356 web icon
Devendra, C. ; Göhl, B. I., 1970. The chemical composition of Caribbean feedingstuffs. Trop. Agric. (Trinidad), 47 (4): 335
Diaz, M. F. ; Padilla, C. ; Gonzalez, A. ; Curbelo, F., 2002. Bromatological characterization of grains and forages in non-grouped maturity Vigna unguiculata varieties. Cuban J. Agric. Sci., 36 (2)
Ecocrop, 2009. Ecocrop database. FAO web icon
Ecoport, 2009. Ecoport database. Ecoport web icon
Eljack, B. H.; Fadlalla, I. M. T.; Ibrahim, M. T., 2009. The effect of feeding cowpea (Vigna unguiculata) on broiler chicks performance and some carcass quality measurements. Assiut Vet. Med. J., 56 (124): 173-180 web icon
Eusebio, P. S. ; Coloso, R. M., 1998. Evaluation of leguminous seed meals and leaf meals as plant protein sources in diets for juvenile Penaeus indicus. Israeli J. Aquacult., 50 (2): 47-54 web icon
Eusebio, P. S.; Coloso, R. M., 2000. Nutritional evaluation of various plant protein sources in diets for Asian sea bass Lates calcarifer. J. Appl. Ichth., 16 (2): 56-60 web icon
Gaulier, R., 1968. Composition en acides-aminés des principales légumineuses fourragères de Madagascar. Rev. Elev. Méd. Vét. Pays Trop., 21: 103-112 web icon
Gómez, C., 2004. Cowpea: Post-Harvest Operations. In: Mejía (Ed.), Post-Harvest Compendium, AGST, FAO web icon
Ikechukwu, J., 2000. Cowpea hulls as potential feedstuff for broilers. Master of Sciences, Animal Nutrition and Biochemistry, University of Nigeria web icon
ILDIS, 2009. ILDIS World Database of Legumes. International Legume Database & Information Service web icon
Iyayi, E. A. ; Kluth, H. ; Rodehutscord, M., 2008. Effect of heat treatment on antinutrients and precaecal crude protein digestibility in broilers of four tropical crop seeds. Int. J. Food Sci. Technol., 43 (8): 610-616 web icon
Kasirye-Alemu, E. C. N., 1980. Effect of processing and storage on the properties and microbiological quality of cowpeas (Vigna unguiculata). PhD Thesis, Saskatchewan University, Food Science Department web icon
Khan, N. A. ; Baker, B. E., 1957. The amino-acid composition of some pakistani pulses. J. Sci. Food Agric., 8: 301-305 web icon
Lim Han Kuo, 1967. Animal feeding stuffs. Part 3. Compositional data of feeds and concentrates. Malay. Agric. J., 46 (1): 63-79
Lon-Wo, E. ; Cino, D. M., 2000. Synthetic amino acids on the efficiency of utilization of an alternative protein source (Vigna unguiculata) for broilers. Cuban J. Agric. Sci., 34 (4): 327-333 web icon
Madamba, R. ; Grubben, G. J. H. ; Asante, I. K. ; Akromah, R., 2006. Vigna unguiculata (L.) Walp. Record from Protabase. Brink, M. & Belay, G. (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands web icon
Makinde, M. O.; Umapathy, E.; Akingbemi, B. T.; Mandisodza, K. T., 1996. Effects of feeding different levels of cowpea (Vigna unguiculata) on gut morphology and faecal composition in weanling pigs . South Afr. Tydskry. Veek., 26 (2): 42-47 web icon
Makinde, M. O.; Umapathy, E.; Akingbemi, B. T.; Mandisodza, K. T.; Skadhauge, E., 1997. Differential response of legumes and creep feeding on gut morphology and faecal composition in weanling pigs. Comparative Biochemistry and Physiology. A, Physiology, 118 (2): 349-354 web icon
Mapiye, C. ; Mwale, M. ; Mupangwa, J. F. ; Mugabe, P. H. ; Poshiwa, X. ; Chikumba, N., 2007. Utilisation of ley legumes as livestock feed in Zimbabwe. Trop. Grassl., 41: 84-91 web icon
Martens, S.; Heinritz, S., 2012. Silage quality of whole and crushed Vigna unguiculata beans inoculated with lactic acid bacteria strains from sow milk. In: Kuoppala, K.; Rinne, M.; Vanhatalo, A. (Eds.), Proc. XVI Int. Silage Conf., Hameenlinna, Finland, 2-4 July 2012, 438-439 web icon
Ningsanond, S., Khummenk, T., Vichiensanth, P. and Tungtrakul, C., 1992. Using the by-product from dehulling of cowpeas for defatted soybeanmeal substitution in growing geese rations. Khon Kaen Agric. J., 20: 97-106 web icon
Nwokolo, E. ; Oji, U. I., 1985. Variation in metabolizable energy content of raw or autoclaved white and brown varieties of three tropical grain legumes. Anim. Feed Sci. Technol., 13 (1): 141-146 web icon
Olubunmi, P. A.; Oyedele, O. J.; Odeyinka, S. M., 2005. Effect of feeding soybean milk residue, cowpea seed waste and corn starch residue on the blood parameters, rectal temperature and carcass quality of West African dwarf goats. Indian J. Anim. Sci., 75 (5): 534-538 web icon
Oyenuga, V. A., 1968. Nigeria's foods and foodstuffs. Ibadan, University Press
Paduano, D. C.; Dixon, R. M.; Domingo, J. A.; Holmes, J. H. G., 1995. Lupin (Lupinus angustifolius), cowpea (Vigna unguiculata) and navy bean (Phaseolus vulgaris) seeds as supplements for sheep fed low quality roughage. Anim. Feed Sci. Technol., 53 (1): 55-69 web icon
Prinyawiwatkul, W. ; McWatters, K. H. ; Beuchat, L. R. ; Phillips, R. D. ; Uebersak, M. A., 1996. Cowpea flour: A potential ingredient in food products. Crit. Rev. Food Sci. Nutr., 36 (5): 413-436 web icon
Rao, S. C. ; Northup, B. K., 2009. Capabilities of four novel warm-season legumes in the southern Great Plains: grain production and quality. Crop science, 49 (3): 1103-1108 web icon
Rivas-Vega, M. E.; Goytortua-Bores, E.; Ezquerra-Brauer, J. M.; Salazar-Garcia, M. G.; Cruz-Suarez, L. E.; Nolasco, H.; Civera-Cerecedo, R., 2006. Nutritional value of cowpea (Vigna unguiculata L. Walp) meals as ingredients in diets for Pacific white shrimp (Litopenaeus vannamei Boone). Food Chem., 97: 41-49 web icon
Robinson, D. ; Singh, D. N., 2001. Alternative protein sources for laying hens. RIRDC publication 00/144. Rural Industries Research and Development Corporation, Kingston ACT, Australia. 85pp. web icon
Sarwar, M.; Sial, M. A.; Abbas, W.; Mahmood, S.; Bhatti, S. A., 1995. Ruminal digestion kinetics of forages and feed byproducts in Sahiwal calves. Indian J. Anim. Nutr., 12 (3): 141-145 web icon
Singh, B. B.; Tarawali, S. A., 1996. Cowpea and its improvement: key to sustainable mixed crop/livestock farming systems in West Africa. In: Renard, C. (Ed.). Crop residues in sustainable mixed crop/lkivestocj farming systems. CAB International, ICRISAT, ILRI web icon
Singh, S. ; Kundu, S. S. ; Negi, A. S. ; Singh, P. N., 2006. Cowpea (Vigna unguiculata) legume grains as protein source in the ration of growing sheep. Small Rumin. Res., 64 (3): 247-254 web icon
Tarawali, S. A.; Singh, B. B.; Peters, M.; Blade, S. F., 1997. Cowpea haulms as fodder. In: Singh, B. B., Advances in cowpea research, IITA web icon
Trompiz, J.; Ventura, M.; Esparza, D.; Alvarado, E.; Betancourt, E.; Padron-Morales, S., 2002. Evaluation of partial substitution of feed concentrate for bean grain meal (Vigna unguiculata) in broiler feeding. Revista Cientifica, Facultad de Ciencias Veterinarias, Universidad del Zulia, 12 (Supplemento 2): 478-480 web icon
Tshovhote, N. J.; Nesamvuni, A. E.; Raphulu, T.; Gous, R. M., 2003. The chemical composition, energy and amino acid digestibility of cowpeas used in poultry nutrition. South Afr. J. Anim. Sci., 33 (1): 65-69 web icon
USDA, 2009. GRIN - Germplasm Resources Information Network. National Germplasm Resources Laboratory, Beltsville, Maryland web icon
Van Rensburg, H. J., 1956. Comparative value of fodder plants in Tanganyika. E. Afr. Agric. For. J., 22: 14-19
Van Wyk, H. P. D. ; Oosthuizen, S. A. ; Basson, I. D., 1951. The nutritive value of South African feeds. Part II. Hay and Pasture Crops. Union of South Africa. Department of Agriculture and Forestry. Science Bulletin No. 298