Egyptian crowfoot grass, Egyptian grass, coast button grass, comb fringe grass, crowfoot grass, duck grass, durban crowfoot, finger comb grass, beach wiregrass [English], zacate egipcio, pata de gallo [Spanish], estrela, grama de dedo egípcia, grama egípcia, mão de sapo, três dedos [Portuguese], عشبة قدم الغراب المصرية، عشبة رجل الحرباء [Arabic], 龙爪茅 [Chinese], หญ้าปากควาย [Thai], cỏ chân vịt, cỏ chân gà [Vietnamese], koutoukou, kourtou [Hausa]; मकरा [Hindi]; tata-kourtou, foutoukou [Peulh, Fulani]; addade [Tamachek]
Cynosurus aegyptius L., Eleusine aegyptiaca (L.) Desf.
Egyptian crowfoot grass (Dactyloctenium aegyptium (L.) Willd.) is a tufted, slightly stoloniferous annual or short-lived perennial grass, up to 75 cm high. It is much branched. The stems are slender, erect or geniculate, and ascending. The stolons may creep and they root from the lower nodes. Roots are horizontal. The leaves are broadly linear, 3-25 cm long, 3-15 mm broad, somewhat succulent and crisp. The inflorescences are borne at the apex of the stem. They are typically digitate or subdigitate and arranged in 2 to 6 unilateral, horizontal spikes. The seeds are angular, wrinkled or rugose, white or brown in colour and about 1 mm long. Egyptian crowfoot grass is highly variable. The seed heads are typical, looking like a crow’s foot, hence the name "Egyptian crowfoot grass" (Quattrocchi, 2006; Bogdan, 1977; Bartha, 1970).
Dactyloctenium aegyptium is a multipurpose grass. It is a mainly used as fodder and relished by all classes of ruminants. In semi-arid areas it makes valuable annual pastures as well as excellent hay. It is also suitable for silage (Bogdan, 1977; Bartha, 1970). The seeds can be fed to poultry or used to make alcoholic beverages, and are eaten by humans in periods of food scarcity. They have ethno-medicinal properties and may be used as a fish poison (Prota, 2013).
Dactyloctenium giganteum B. S. Fisher & Schweick., a close relative of Dactyloctenium aegyptium, is a taller grass with a slightly different inflorescence (the spikes are suberect and not horizontally spreading). It is found in East and South Africa where it is used to improve the productivity of sandveld pastures (Bogdan, 1977).
Dactyloctenium aegyptium is native to Africa and widely distributed throughout the tropics, subtropics, and warm temperate regions of the Old World (USDA, 2013; Manidool, 1992). It was introduced by accident to the Americas and spread as a weed in maize and other crops in South America (Bogdan, 1977). It usually occurs in disturbed areas (roadsides, fallows and waste lands), especially on sandy soils (beaches). It is found between sea level and an altitude of 2100 m, in areas with annual rainfall ranging from 400 to 1500 mm (Manidool, 1992; Skerman et al., 1990). Dactyloctenium aegyptium does well on a wide range of soils included alkaline and saline ones and it responds well to the addition of N fertilizer (Prota, 2013; Bogdan, 1977). Dactyloctenium aegyptium is one of the most drought-resistant grasses as it can quickly grow and seed during the wet season (Skerman et al., 1990).
Dactyloctenium aegyptium can be sown 1 cm deep at the onset of the wet season in semi-arid areas. It grows quickly and can be cut for fresh feeding or hay-making (Prota, 2013). It is suitable for grazing and does well in overgrazed pastures (Bogdan, 1977). Dactyloctenium aegyptium yields excellent hay in quantities ranging from 3 to 6 t DM/ha (Ecocrop, 2013; Skerman et al., 1990). When grown in crops, it can be removed during weeding operations and fed fresh to livestock (Prota, 2013).
Weed
Dactyloctenium aegyptium is among the 20 most globally widespread weeds (Holm, 1977). It can be troublesome in crops such as peanuts, cotton, maize or dry-seeded rice (CABI, 2013; Chauhan, 2011; Holm, 1997). However, it is not considered a noxious or invasive species (CABI, 2013). It can be controlled through tillage that buries the seeds deeper than 10 cm, through the use of crop residues as mulch, and by chemical weedkillers (Chauhan, 2011).
Soil erosion control
Dactyloctenium aegyptium is used as a stabilizer of sandy soils in Australia and for erosion control elsewhere (Jacobs et al., 1993).
Dactyloctenium aegyptium has a relatively poor nutritive value, with a protein content comprised between 5 and 15% DM and crude fibre ranging from 26 to 39% DM depending on the stage of growth, time of the year and soil fertility (Zaharaby et al., 2001; Göhl, 1982; Feedipedia, 2013). The straw has a low protein content (4-5% DM) (Feedipedia, 2013).
HCN content and other constraints
Dactyloctenium aegyptium can be rich in cyanogenic glucosides and may be a danger to livestock at certain times (Skerman et al., 1990). In some areas of India and Africa, the seeds are used as a famine food (Salih et al., 1992), but the grain has an unpleasant taste and can cause internal disorders in humans (Manidool, 1992).
Cattle
Dactyloctenium aegyptium grass is a useful fodder for ruminants in dry areas or on sandy coasts and it can make good quality hay (Manidool, 1992). It is grazed by all ruminants, generally in association with other desert grasses which occupy the same agro-ecological niche, for example in Rajasthan and other dry areas of India. The reported reference index measured with sheep was comprised between 0.62 and 1.45 (Sankhyan et al., 1995, Sankhyan et al., 1999; Sankhyan et al., 2007). In a study comparing the nutritive value of different desert grasses in Bangladesh, Dactyloctenium aegyptium was reported to have an in vitro (gas production) OM digestibility of 65% (Zaharaby et al., 2001).
Camels
Dactyloctenium aegyptium is a palatable pasture for camels (Champak et al., 2008), but supplementation is required to meet their nutritional requirements (Nagpal et al., 2000).
Dactyloctenium aegyptium could be considered a suitable forage for rabbits though no direct experiments have been reported (April 2013). This assumption is based on the spontaneous small, but significant, intake of this forage by the Tehuantepec jackrabbit (Lepus flavigularis) in Mexico (Lorenzo et al., 2011).
Avg: average or predicted value; SD: standard deviation; Min: minimum value; Max: maximum value; Nb: number of values (samples) used
Main analysis | Unit | Avg | SD | Min | Max | Nb | |
Dry matter | % as fed | 30.3 | 7.1 | 20.4 | 44.0 | 18 | |
Crude protein | % DM | 8.3 | 2.5 | 4.7 | 15.6 | 27 | |
Crude fibre | % DM | 33.4 | 3.5 | 26.8 | 39.1 | 26 | |
NDF | % DM | 68.7 | 14.0 | 41.9 | 68.9 | 3 | * |
ADF | % DM | 39.1 | 14.6 | 21.6 | 50.3 | 3 | * |
Lignin | % DM | 5.2 | * | ||||
Ether extract | % DM | 1.6 | 0.3 | 1.1 | 2.1 | 24 | |
Ash | % DM | 9.1 | 1.8 | 6.5 | 12.5 | 27 | |
Gross energy | MJ/kg DM | 18.0 | * | ||||
Minerals | Unit | Avg | SD | Min | Max | Nb | |
Calcium | g/kg DM | 6.1 | 1.3 | 3.6 | 7.7 | 20 | |
Phosphorus | g/kg DM | 2.3 | 0.8 | 1.1 | 4.4 | 20 | |
Potassium | g/kg DM | 21.3 | 20.0 | 10.0 | 101.0 | 19 | |
Sodium | g/kg DM | 2.2 | 3.8 | 0.1 | 8.0 | 4 | |
Magnesium | g/kg DM | 3.7 | 4.5 | 2.0 | 20.0 | 15 | |
Manganese | mg/kg DM | 63 | 48 | 77 | 2 | ||
Zinc | mg/kg DM | 126 | 151 | 29 | 300 | 3 | |
Copper | mg/kg DM | 8 | 2 | 6 | 10 | 3 | |
Iron | mg/kg DM | 20 | 1 | ||||
Ruminant nutritive values | Unit | Avg | SD | Min | Max | Nb | |
OM digestibility, Ruminant | % | 63.3 | * | ||||
OM digestibility, ruminants (gas production) | % | 65 | 1 | ||||
Energy digestibility, ruminants | % | 60.5 | * | ||||
DE ruminants | MJ/kg DM | 10.9 | * | ||||
ME ruminants | MJ/kg DM | 8.8 | * | ||||
ME ruminants (gas production) | MJ/kg DM | 11.2 | 1 |
The asterisk * indicates that the average value was obtained by an equation.
References
Bartha, 1970; CIRAD, 1991; Dougall et al., 1960; Dougall et al., 1965; FUSAGx/CRAW, 2009; Holm, 1971; Naik et al., 1998; Sen, 1938; Tefera et al., 2009; Zaharaby et al., 2001
Last updated on 30/04/2013 13:36:32
Main analysis | Unit | Avg | SD | Min | Max | Nb | |
Dry matter | % as fed | 92.8 | 1.2 | 91.3 | 94.0 | 4 | |
Crude protein | % DM | 6.0 | 3.8 | 1.9 | 10.4 | 5 | |
Crude fibre | % DM | 42.0 | 4.4 | 36.9 | 44.7 | 3 | |
NDF | % DM | 76.7 | 42.1 | 76.7 | 2 | * | |
ADF | % DM | 48.5 | * | ||||
Lignin | % DM | 7.3 | 7.3 | 13.3 | 2 | * | |
Ether extract | % DM | 0.8 | 0.3 | 0.4 | 1.2 | 4 | |
Ash | % DM | 7.1 | 1.1 | 6.4 | 8.4 | 3 | |
Gross energy | MJ/kg DM | 18.4 | * | ||||
Minerals | Unit | Avg | SD | Min | Max | Nb | |
Calcium | g/kg DM | 2.2 | 2.8 | 0.3 | 5.4 | 3 | |
Phosphorus | g/kg DM | 0.4 | 0.2 | 0.2 | 0.5 | 3 | |
Potassium | g/kg DM | 2.6 | 1.8 | 1.6 | 4.7 | 3 | |
Sodium | g/kg DM | 0.4 | 0.2 | 0.7 | 2 | ||
Magnesium | g/kg DM | 0.6 | 0.6 | 0.2 | 1.3 | 3 | |
Ruminant nutritive values | Unit | Avg | SD | Min | Max | Nb | |
OM digestibility, Ruminant | % | 51.1 | * | ||||
Energy digestibility, ruminants | % | 47.8 | * | ||||
DE ruminants | MJ/kg DM | 8.8 | * | ||||
ME ruminants | MJ/kg DM | 7.1 | * | ||||
Nitrogen digestibility, ruminants | % | 44.3 | 1 |
The asterisk * indicates that the average value was obtained by an equation.
References
Balgees et al., 2011; CIRAD, 1991; Walker, 1975
Last updated on 30/04/2013 12:59:18
Main analysis | Unit | Avg | SD | Min | Max | Nb | |
Dry matter | % as fed | 94.7 | 1.2 | 93.0 | 96.0 | 6 | |
Crude protein | % DM | 4.5 | 1.7 | 3.5 | 7.9 | 6 | |
Crude fibre | % DM | 38.2 | 3.4 | 32.4 | 42.2 | 6 | |
NDF | % DM | 74.1 | * | ||||
ADF | % DM | 46.6 | * | ||||
Lignin | % DM | 6.4 | * | ||||
Ether extract | % DM | 0.8 | 0.2 | 0.5 | 1.1 | 6 | |
Ash | % DM | 14.2 | 6.8 | 7.5 | 25.3 | 6 | |
Gross energy | MJ/kg DM | 17.9 | * | ||||
Minerals | Unit | Avg | SD | Min | Max | Nb | |
Calcium | g/kg DM | 4.1 | 0.9 | 3.3 | 5.8 | 6 | |
Phosphorus | g/kg DM | 0.6 | 0.1 | 0.4 | 0.8 | 6 | |
Potassium | g/kg DM | 6.2 | 2.6 | 3.7 | 11.2 | 6 | |
Magnesium | g/kg DM | 2.2 | 0.8 | 1.5 | 3.6 | 6 | |
Ruminant nutritive values | Unit | Avg | SD | Min | Max | Nb | |
OM digestibility, Ruminant | % | 50.5 | * | ||||
Energy digestibility, ruminants | % | 46.7 | * | ||||
DE ruminants | MJ/kg DM | 8.4 | * | ||||
ME ruminants | MJ/kg DM | 6.8 | * |
The asterisk * indicates that the average value was obtained by an equation.
References
Last updated on 30/04/2013 13:00:14
Main analysis | Unit | Avg | SD | Min | Max | Nb | |
Crude protein | % DM | 13.1 | 1 | ||||
Crude fibre | % DM | 4.4 | 1 | ||||
NDF | % DM | 18.7 | * | ||||
ADF | % DM | 5.3 | * | ||||
Lignin | % DM | 1.1 | * | ||||
Ether extract | % DM | 1.9 | 1 | ||||
Ash | % DM | 8.3 | 1 | ||||
Total sugars | % DM | 1.6 | 1 | ||||
Gross energy | MJ/kg DM | 17.2 | * | ||||
Minerals | Unit | Avg | SD | Min | Max | Nb | |
Calcium | g/kg DM | 10.7 | 1 | ||||
Phosphorus | g/kg DM | 3.9 | 1 | ||||
Potassium | g/kg DM | 3.0 | 1 | ||||
Sodium | g/kg DM | 0.2 | 1 | ||||
Magnesium | g/kg DM | 2.2 | 1 | ||||
Manganese | mg/kg DM | 425 | 1 | ||||
Zinc | mg/kg DM | 69 | 1 | ||||
Copper | mg/kg DM | 7 | 1 | ||||
Iron | mg/kg DM | 121 | 1 | ||||
Amino acids | Unit | Avg | SD | Min | Max | Nb | |
Alanine | % protein | 7.5 | 1 | ||||
Arginine | % protein | 4.2 | 1 | ||||
Aspartic acid | % protein | 6.1 | 1 | ||||
Cystine | % protein | 1.5 | 1 | ||||
Glutamic acid | % protein | 27.6 | 1 | ||||
Glycine | % protein | 3.5 | 1 | ||||
Histidine | % protein | 2.4 | 1 | ||||
Isoleucine | % protein | 4.8 | 1 | ||||
Leucine | % protein | 9.9 | 1 | ||||
Lysine | % protein | 2.0 | 1 | ||||
Methionine | % protein | 3.2 | 1 | ||||
Phenylalanine | % protein | 6.8 | 1 | ||||
Proline | % protein | 7.1 | 1 | ||||
Serine | % protein | 4.8 | 1 | ||||
Threonine | % protein | 3.7 | 1 | ||||
Tyrosine | % protein | 3.5 | 1 | ||||
Valine | % protein | 5.8 | 1 | ||||
Ruminant nutritive values | Unit | Avg | SD | Min | Max | Nb | |
OM digestibility, Ruminant | % | 84.9 | * | ||||
Energy digestibility, ruminants | % | 80.9 | * | ||||
DE ruminants | MJ/kg DM | 13.9 | * | ||||
ME ruminants | MJ/kg DM | 11.6 | * | ||||
Nitrogen digestibility, ruminants | % | 69.6 | * | ||||
Pig nutritive values | Unit | Avg | SD | Min | Max | Nb | |
Energy digestibility, growing pig | % | 83.2 | * | ||||
DE growing pig | MJ/kg DM | 14.3 | * |
The asterisk * indicates that the average value was obtained by an equation.
References
Last updated on 30/04/2013 13:01:43
Heuzé V., Tran G., Maxin G., Lebas F., 2015. Egyptian crowfoot grass (Dactyloctenium aegyptium). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/465 Last updated on May 11, 2015, 14:30