Published on Feedipedia (https://www.feedipedia.org)


Sorghum grain

Sorghum grains, France
Sorghum grain, red variety
Sorghum grain
Sorghum grain
Sorghum grain, white variety
Various sorghums
Diversity of sorghum
Sorghum, black seeds
Sorghum panicles
Sorghum, red seeds
Sorghum, white seeds
Common names 

Sorghum, broomcorn, forage sorghum, grain sorghum, milo, great millet, durra, dourah [English]; sorgho, sorgho grain, sorgho fourrager, gros mil [French]; Mohrenhirse, Durrakorn, Besenkorn, Guineakorn [German]; sorgo, milho-zaburro [Portuguese]; sorgo, zahína [Spanish]; kafferkoren [Dutch]; sorgo, saggina [Italian]; ذرة بيضاء ; ورغم [Arabic]; জোয়ার [Bengali]; 高粱 [Chinese]; ज्वार (jwaarie, jowar, jowari) [Hindi]; モロコシ [Japanese]; 수수속 [Korean]; сорго [Russian]; ข้าวฟ่าง [Thai]

Related feed(s) 
  • Sorghum forage
  • Sorghum by-products
Feed categories 
  • Cereal grains and by-products
  • Plant products and by-products
Species 

Sorghum bicolor (L.) Moench [Poaceae]

Synonyms 

Sorghum vulgare Pers. There are numerous synonyms for Sorghum bicolor (see GRIN for an exhaustive list).

Description 

Sorghum (Sorghum bicolor (L.) Moench) grain is the fifth major staple cereal after wheat, rice, maize and barley. It is cultivated worldwide in warmer climates and is an important food crop in semi-arid tropical areas of Africa, Asia and Central America. Sorghum grain is a small, hard caryopsis covered by glumes. In grain sorghum, panicles are compact and bear 25,000 to 60,000 seeds/kg. Forage sorghum yields 120,000-160,000 seeds/kg. The whole grain can be boiled, roasted, popped or ground to make flour for baking (flat breads) and pastry. Sorghum grain is used for the production of alcoholic beverages, including beer and liquors. Some sorghum varieties are used for dyeing textiles or leathers (Ecoport, 2009).

In animal nutrition, grain sorghum is mostly used as an energy source and is a good feedstuff for poultry, pigs and ruminants. The stalks remaining after harvest can be grazed as some varieties stay green for a long period of time. Sorghum may also be grown for fodder, for grazing or cut green to make silage and hay (see the Sorghum forage datasheet) (Balole et al., 2006).

Cultivars

Sorghum bicolor comprises several wild, weedy and cultivated annual types (subspecies) that are fully interfertile. Cultivated annual types are subdivided into 7 agronomic groups (Magness et al., 1971):

  • Kafir sorghums, originated from South Africa, with thick, juicy stems, large leaves, and awnless cylindrical-shaped panicles. Seeds are white, pink or red and medium in size.
  • Milo sorghums, originated from East Africa, have less juicy stems than the Kafir group. Leaf blades are wavy with a yellow midrib. Heads are bearded or awned, compact and oval in shape. Seeds are large, pale pink to cream in colour. Plants tend to be more tolerant to heat and drought than the Kafir group.
  • Feterita sorghums came from Sudan. Leaves are sparse in number. Stems are slender and dry. Panicles are compact and oval in shape. Seeds are very large for sorghum and chalky white in color. 
  • Durra sorghums are from the Mediterranean Area, the Near East and Middle East. Stems are dry. Panicles are bearded, hairy and may be compact or open. Seeds are large and flattened.
  • Sballu sorghums from India have tall, slender, dry stems. Heads are loose. Seeds are pearly white in color and late maturing, thus requiring a relatively long growing season.
  • Koaliang sorghums, typical of those mainly grown in China, Manchuria and Japan, have slender, dry, woody stems with sparse leaves. Panicles are wiry and semi-compact. Seeds are brown and bitter in taste.
  • Hegari sorghums from Sudan are somewhat similar to Kafirs but have more nearly oval panicles, and plants that tiller profusely. Seeds are chalky white.
  • In the United States most varieties have been derived from crosses involving Kafir and Milo.

These 7 groups can cross-pollinate to give many hybrids. The germplasm of sorghum is enormous: the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Patancheru, India, keeps a collection of 36,000 accessions from all the major sorghum-growing areas of the world (Balole et al., 2006).

Distribution 

Sorghum is native to East Africa, possibly to Ethiopia (Ecoport, 2010) and it is thought to have been domesticated around 1000 BC (Balole et al., 2006). It is now widespread between 50°N (USA and Russia) and 40°S, and from sea-level up to an altitude of 1000 m (Ecoport, 2010). Optimal growth conditions for sorghum are 25-30°C at seedling and 30°C day-temperature during growth, 400-750 mm annual rainfall on deep, well-drained loamy clay with a pH between 5.5 and 7.5.

Sorghum is tolerant to drought because of its root system. It performs better than maize during drought and occupies areas unsuitable for maize in stress-prone semi-arid areas. It is tolerant of salinity and to some extent to waterlogging for a short period. It is sensitive to frost and to sustained flooding. It is susceptible to weeds during its early stages of development. In Africa, Striga hermonthica, a parasitic weed, attaches itself to the roots and is particularly noxious to sorghum (FAO, 2009).

Forage management 

Yields

Green matter yields are about 20 t/ha (Balole et al., 2006), but may reach 75 t/ha under optimal growing conditions (FAO, 2009). Average yields of grain range from 0.5 to 0.9 t/ha in Africa, 2.3 t/ha in China and 3.6 t/ha in the USA (rainfed sorghum), or 4.5 to 6.5 t/ha from hybrid types under irrigation (FAO, 2009).

Processes 

The grains have to be processed before being fed to cattle, or else a large proportion of them will be swallowed whole and the waxy bran covering the grain will make digestion difficult. Grinding is the simplest, least expensive method of preparing sorghum grain for cattle; other methods include dry-rolling, steam-rolling, flaking and popping. All methods produce end products with different degrees of digestibility.

Environmental impact 

Grain sorghum can be a high productive crop that requires adequate amounts of NPK fertilizer, with potentially deleterious effects on soils and groundwater. However, under harsh economic conditions, it may be cultivated in rotation with a legume crop benefiting from the nitrogen provided by the legume. After harvest, ploughing in the stubble can improve the organic matter status of the soil and help limit erosion. When sown in 20 cm rows, sorghum gives good protection from soil erosion. As a drought-tolerant species, sorghum improves water use efficiency while supporting relatively high levels of production in dairy cattle.

Toxic soils reclamation

Sorghum is tolerant of many pollutants and it thrives in toxic soils that kill most plants. Because of its penetrating root system, sorghum also captures the nitrogen which may be in excess in the soil, a property that has been useful in reclamation of fallow lands, where wastes have been discharged, and where soil N was very high (400kg/ha). Sorghum also thrives on salty irrigated soils: it restores the porosity of the soil making it possible to grow a high yielding wheat crop in one season (NRC, 1996).

Cover crop and soil improver

Sorghum can be used as a cover crop during the fall and winter: sown during the fall, it covers more than 60% of the soil before winter and protects it from wind erosion. It also helps through sparing more water than other cover crops because it dies quickly after the first frosts and does not withdraw water from the soil. After harvest, ploughing in the stubbles can improve the organic status of the soil and limit erosion (UC SAREP, 2006; NRC, 1996).

Weed and pest control

Sorghum has some detrimental effects on broad-leaf weeds, which are still effective after the sorghum has died. This could be due to phenolics and cyanogenics released by the sorghum roots that hinder weed growth (NRC, 1996).

Crop support

Dead stalks of sorghum grain can provide support to climbing legumes several months after the grain is harvested (NRC, 1996).

Nutritional attributes 

Grain sorghum is mostly used as a cereal grain energy source and is a good feedstuff for poultry, pigs and ruminants. Its composition is roughly similar to that of maize and it is particularly rich in starch (more than 70% of the dry matter). Crude protein content in sorghum grain ranges from 9 to 13% DM and is slightly higher than that of maize, though much more variable depending on growing conditions. Like maize, it has a low lysine content and its utilization may require amino acid supplementation. Fat content is also slightly lower in sorghum grain than in maize. Sorghum grain is devoid of xanthophylls and 70% of its phosphorus is bound in phytate (Sauvant et al., 2004).

Potential constraints 

Tannins

Sorghum is the only cereal that contains tannins. Tannins are associated with enhanced agronomic qualities such as reduced pre-harvest molding, enhanced resistance to pathogens and pests, lower bird depredation (in "bird-resistant" sorghums, see below) and lower pre-harvest germination. However, tannins are antinutritional factors as they bind with proteins, precipitate them and make them unavailable during digestion. Therefore, the nutritive value of feeds containing tannins is consequently reduced. There are roughly two types of sorghum (Taylor, 2001):

  • High-tannin or “bird-resistant” sorghums. Those sorghums can be recognized because of a pigmented testa situated below the pericarp. Samples of sorghum grain are assessed by the “Bleach test” which removes the pericarp and make the pigmented testa turn black while the unpigmented testa remains light coloured.
  • Low-tannin sorghums.

Due to breeding efforts aiming at eliminating sorghum tannins, the majority of sorghums currently produced are tannin-free in the USA (99% of the production), Europe (Vignau-Loustau et al., 2008), Australia, India and Thailand (Awika et al., 2004; Subramanian et al., 2000; Walker, 1999). However, in countries where bird predation is an important issue, the use of low-tannin sorghums may not be economically advantagious and the use of high-tannin cultivars is likely to remain important (Kyarisiima et al., 2004; Taylor, 2003). In Eastern and Southern Africa, traditional sorghum varieties of moderate tannin content are widely grown for staple food and alcoholic beverages (Awika et al., 2004), though there are local variations. For example, varieties containing tannins are common in Niger and Senegal, but only rarely grown in Mali and Burkina Faso (Abdoulaye et al., 2006). In Southern Africa, small-scale farmers intercrop tannin and tannin-free sorghums in areas prone to high bird predation in order to reduce grain losses (Awika et al., 2004). In Argentina, varieties with tannins are still cultivated (Massigoge et al., 2002).

In poultry, tannins are known to reduce growth rate, egg production and protein utilization, and to damage the mucosal lining of the digestive tract. Increasing protein content or amino-acid levels in the diet may alleviate the deleterious effects of tannins.

In pigs, feed intake and growth rates are also reduced by high-tannin sorghums, with feed efficiency being reduced by between 5% and 10% compared to that with low-tannin sorghum.

In ruminants, the effects are less negative since condensed tannins are complexed and precipitated by the rumen microflora (Reed, 1995). The remaining active tannins may have beneficial effects, such as bloat prevention and increasing the amount of by-pass protein (Waghorn, 2008; Reed, 1995). High-tannin sorghums have been found to have antioxidative activity within the beef cattle muscles and are able to enhance meat quality (Reed, 2008).

The adverse effects of high-tannin sorghum can be alleviated by various methods:

  • Reconstitution followed by anaerobic storage.
  • Formaldehyde treatment, acid treatment, NH4OH, NaOH, K2CO3, CaO, urea (Russell et al., 1989).
  • Providing greater amounts of amino-acid in the diet: 0.15% methionine (Armstrong cited by King et al., 2000), or a mixture of choline and methionine (Daghir, 2008).

Mycotoxins

Sorghum ergot is a fungal infection caused by Claviceps sorghi, which produces alkaloids. Several observations in Australian piggeries have reported feed refusal, low milk production in sows and subsequent loss of litters when diets were based on grains containing 1% to 20% sclerotia. In cows, 20% sclerotia caused a drop in milk production. In poultry, 5% sclerotia induced respiratory difficulties, diarrhoea and death. No effect were noticed at 1.25% sclerotia. Sorghum ergot problems can be prevented through an appropriate visual inspection of the sorghum grain (Bandyopadhyay et al., 1998).

Like maize, sorghum is susceptible to various Fusarium spp. Mycotoxins such as aflatoxin, ochratoxin, zearalenone, deoxynivalenol or fumonisins may thus occur (their effects on livestock are fully described in the Maize grain datasheet). However, fungal attacks in sorghum are less frequent than in maize because sorghum grows in warmer and drier climates than maize. Moreover, when Fusarium is present in sorghum it produces much less fumonisin than in maize (Visconti et al., 1994).

Ruminants 

Sorghum grain is palatable to cattle and its nutritive value is comparable to that of maize (Piccioni, 1965).

Kafirins (proteins found in sorghum) make starch digestion more difficult; in the rumen, sorghum starch is less degradable than that from wheat or barley. This low rumen starch degradability may be beneficial compared to other cereal grains because its lower fermentation rate make it less acidogenic in the rumen. However, low rumen degradability also means that higher amounts of starch escape from the rumen, reach the intestine and may be lost in the feces (Sauvant, 1997). As a result, the overall energy supply is reduced and sorghum grain provides less energy than maize (Laurent, 1988).

In high producing cattle (steers from feedlots and high producing dairy cows) that have high energy requirements, there have been several attempts to increase starch degradability, relying on the fact that slowly degrading starches can be sensitive to processing (Offner et al., 2003). Steam-flaking appeared to be the best way to increase energy level (Oliveira et al., 1993). Net energy for lactation is 20% greater for steam-flaked sorghum than for dry-rolled sorghum (Theurer et al., 1999). Milk yield and milk protein yield are higher since steam flaking can improve the cycling of urea, the microbial protein flow to the small intestine and the mammary uptake of amino-acids (Theurer et al., 1999; Santos et al., 1998). However, the cost of this process may make it economically suitable only for high-producing cattle, as less expensive methods, such as coarse grinding, dry- and steam-rolling give good results.

Grazing stocker calves supplemented with sorghum grain had higher daily weight gain. Dairy cows grazing Chloris gayana and supplemented with sorghum grain gave less milk protein during summer (Moss et al., 2000). In dairy heifers, even though the feed efficiency of sorghum was lower than that of maize (Hamman et al., 2001), a diet with 30% sorghum concentrate was significantly cheaper than with maize (Reddy et al., 1995).

Feeding lambs and calves with processed sorghum grain rather than with whole grain had no effect on growth. However, in calves and kids, pelleted grain gave a higher feed to gain ratio (Economides et al., 1990).

Sheep can be fed whole grain or coarsely ground grain sorghum (Piccioni, 1965).

Pigs 

Low-tannin sorghum grain has an energy level identical to that of maize grain for pigs. Amino acid digestibilities of low-tannin sorghum are slightly lower than those of maize (Sauvant et al., 2004). In growing pigs, high-tannin sorghums were reported to have a lower energy and protein digestibility than low-tannin sorghum (Cousins et al., 1981). High-tannin sorghums may also affect meat flavour (Hansen et al., 1973).

Low-tannin sorghum can be included at 60% of the diet in weaned pigs between 9 and 25 kg, and up to 75% in growing finishing pigs if properly supplemented with soybean meal, vitamins and minerals (Jacquin, 1991). Sorghum grain can be roll-milled or hammer-milled in order to reduce particle size and thus enhance digestibility. In starter pigs, hammer-milled sorghum (650 µm) allowed a better performance than roll-milled sorghum (1 mm) (Walker, 1999). Pelleting sorghum grain resulted in good animal performance provided that there were no fines in the diet (Stark et al., 1993).

Extruded sorghum grain improved growth in young weanling pigs (0 to 10 days after weaning) and finishing pigs but not in older post-weanling pigs (Richert et al., 1992; Hancock et al., 1991).

Poultry 

Sorghum is of utmost importance in poultry feeding in countries where it is available. Sorghum grain can be fed as the main or only grain in poultry diets. Broilers can be fed up to 70% low-tannin sorghum in combination with soybean meal, minerals and vitamins (Jacquin, 1991). Low-tannin sorghum has a metabolizable energy comparable or higher to that of maize (Sauvant et al., 2004), and can replace maize grain to a great extent (Subramanian et al., 2000) even if a meta-analysis of literature on sorghum use shows slightly lower performance (Batonon et al., 2015). Tannin-free cultivars are preferred by poultry, but it is possible to feed them with high-tannin sorghum, provided it is reconstituted after high-moisture storage for 10 days. High-moisture sorghum is reported to have a higher protein digestibility and a slightly higher metabolizable energy. However, its digestibility remains lower than for low-tannin sorghum (Daghir, 2008).

It may also be beneficial to add fat, methionine or to grind grain sorghum in order to enhance digestibility (Blair, 2008).

High phytate content is also a problem because the unavailability of P reduces growth performance and can induce locomotive disorders. It may be counterbalanced by P supplementation or by adding phytase. The low level of xanthophylls (10 fold smaller than yellow corn) requires pigment supplementation in order to maintain egg yolk colour (Walker, 1999).

High-lysine sorghum cultivars have been created, but while they have a higher protein digestibility, their starch content is lower and less available than in normal sorghum, hence reducing the advantages of the higher lysine on broiler performances (Elkin, 2002).

Rabbits 

Sorghum is commonly used in commercial rabbit feeds in Mexico (Morales-Zuniga, 1980), or as the only grain in experimental control diets (Abdel-Ati et al., 2009; Gongnet et al., 1993). Sorghum grain is used by farmers in backyard rabbit feeding in various countries such as Uganda (Lukefahr, 1998), Ghana (Williams, 1979) and Rwanda (Tassin, 1989). It is typically included at between 20 and 40% of the diet, but it could be increased up to 50% without any problem in feeds for growing rabbits and breeding does (Omole, 1982). In some experiments it was included at up to 75% of the diet (Gongnet et al., 1993)

Rabbits were fed with sorghum grain instead of maize with no deleterious effect on growth rate, feed intake and feed conversion (Carregal et al., 1980; Egbo et al., 2007). While low-tannin sorghum did not negatively affect rabbit performance, brown sorghum induced a lower daily gain and a poorer feed conversion (Muriu et al., 2002). This effect is attributed to the high tannin content of brown sorghum, which alters the activity of digestive enzymes and reduces calcium absorption (Al-Mamary et al., 2001). The digestible energy value of low-tannin sorghum is slightly lower than that of maize or wheat (Carabaño Luengo, 1995).

The extrusion of sorghum grain improves the ileal digestibility of starch and may, therefore, increase its energy value and reduce health issues (Kazue Otutumi et al., 2005; Gidenne, 2000).

Malted sorghum grains were used to feed growing rabbits in place of raw sorghum or maize grain, but malting did not seem to provide any technical or economical advantage (Abubakar et al., 2006; Ngele et al., 2008; Aderemi et al., 2010).

High-moisture sorghum grain silage with either low or high tannin content may totally replace maize grain (25% in the control diet) in growing rabbit diets without depressing performance. Low and high tannin sorghum grain silages resulted in similar growth rates but the digestible energy of the low-tannin sorghum was slighty higher (17.9 vs. 17.2 MJ/kg DM) (Furlan et al., 2004).

Fish 

Like other cereals, sorghum is often used in aquafeed formulation and may be included at up to 50% in fish diets (Hasan et al., 2007), although it is less palatable than maize. Feeds made with sorghum grain are darker, denser and pellets do not bind as well as with maize (Lowell, 1998).

Crustaceans 

Sorghum is valued in shrimp ponds (Hasan et al., 2007).

Tables of chemical composition and nutritional value 
  • Sorghum grain (all types)
  • Sorghum grain, high tannin
  • Sorghum grain, low tannin
  • Sorghum grain, red varieties
  • Sorghum grain, white varieties

Avg: average or predicted value; SD: standard deviation; Min: minimum value; Max: maximum value; Nb: number of values (samples) used

Sorghum grain (all types)

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 87.4 2.1 83.0 93.6 1634
Crude protein % DM 10.8 1.1 8.1 14.3 1648
Crude fibre % DM 2.8 0.6 1.7 4.6 700
NDF % DM 11.0 1.7 7.8 14.7 86
ADF % DM 4.3 1.1 2.7 7.1 86
Lignin % DM 1.1 0.6 0.3 2.9 104
Ether extract % DM 3.4 0.4 2.4 4.4 552
Ash % DM 2.1 0.9 1.3 6.6 777
Starch (polarimetry) % DM 74.5 1.9 69.8 78.7 736
Total sugars % DM 1.4 0.5 0.7 2.4 70
Gross energy MJ/kg DM 18.8 0.5 18.3 20.1 86 *
 
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 0.3 0.2 0.1 0.9 181
Phosphorus g/kg DM 3.3 0.4 2.6 4.3 229
Potassium g/kg DM 4.3 0.6 2.8 5.3 72
Sodium g/kg DM 0.2 0.1 0.0 0.4 23
Magnesium g/kg DM 1.8 0.4 1.1 2.5 97
Manganese mg/kg DM 12 4 8 17 16
Zinc mg/kg DM 24 7 14 38 18
Copper mg/kg DM 5 4 3 17 19
Iron mg/kg DM 120 145 24 497 11
 
Amino acids Unit Avg SD Min Max Nb
Alanine % protein 9.0 0.5 8.2 9.9 53
Arginine % protein 4.0 0.4 3.3 4.7 63
Aspartic acid % protein 6.9 0.4 6.0 7.6 53
Cystine % protein 1.9 0.3 1.4 2.5 52
Glutamic acid % protein 20.9 1.0 18.2 22.6 53
Glycine % protein 3.2 0.3 2.7 3.7 61
Histidine % protein 2.3 0.2 1.9 2.5 57
Isoleucine % protein 4.0 0.3 3.5 4.5 68
Leucine % protein 13.3 0.8 11.6 14.5 66
Lysine % protein 2.2 0.2 1.8 2.7 83
Methionine % protein 1.7 0.2 1.3 2.0 59
Phenylalanine % protein 5.3 0.3 4.6 5.7 61
Proline % protein 8.4 0.7 6.2 9.5 39
Serine % protein 4.5 0.2 4.0 5.0 58
Threonine % protein 3.3 0.2 2.9 3.7 68
Tryptophan % protein 1.0 0.1 0.8 1.2 35
Tyrosine % protein 4.0 0.3 3.3 4.4 50
Valine % protein 4.9 0.3 4.4 5.5 57
 
Secondary metabolites Unit Avg SD Min Max Nb
Tannins (eq. tannic acid) g/kg DM 1.7 1.1 0.1 6.0 386
Tannins, condensed (eq. catechin) g/kg DM 28.6 31.4 0.1 110.0 59
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 88.0 4.7 79.4 91.0 5 *
Energy digestibility, ruminants % 85.4 4.2 78.5 88.2 4 *
DE ruminants MJ/kg DM 16.0 *
ME ruminants MJ/kg DM 13.5 1.0 12.1 14.6 4 *
Nitrogen digestibility, ruminants % 68.4 *
a (N) % 41.2 1
b (N) % 58.8 1
c (N) h-1 0.039 1
Nitrogen degradability (effective, k=4%) % 70 *
Nitrogen degradability (effective, k=6%) % 64 43 64 2 *
 
Pig nutritive values Unit Avg SD Min Max Nb
Energy digestibility, growing pig % 85.7 4.3 76.6 91.9 14 *
DE growing pig MJ/kg DM 16.1 0.8 14.5 16.8 16 *
MEn growing pig MJ/kg DM 15.7 0.3 15.5 16.3 5 *
NE growing pig MJ/kg DM 12.5 *
Nitrogen digestibility, growing pig % 70.6 7.7 58.5 86.4 15
 
Poultry nutritive values Unit Avg SD Min Max Nb
AMEn cockerel MJ/kg DM 16.0 *
AMEn broiler MJ/kg DM 15.7 14.4 15.7 2 *
 
Rabbit nutritive values Unit Avg SD Min Max Nb
Energy digestibility, rabbit % 77.7 *
DE rabbit MJ/kg DM 14.6 1
MEn rabbit MJ/kg DM 14.2 *

The asterisk * indicates that the average value was obtained by an equation.

References

Adeola, 2006; AFZ, 2011; Aganga et al., 2000; Ahmed et al., 1983; Anderson et al., 1991; Antongiovanni et al., 1980; Ball et al., 1915; Behnke, 1983; Bell et al., 1989; Bhannasiri, 1970; Carré et al., 1986; CGIAR, 2009; CIRAD, 1991; CIRAD, 1994; Cirad, 2008; Cousins et al., 1981; De Boever et al., 1984; De Boever et al., 1994; Dewar, 1967; Donkoh et al., 2009; Erasmus et al., 1994; Fekete et al., 1986; Fialho et al., 1995; Fredrickson et al., 1995; Furuya et al., 1988; Gartner et al., 1975; Göhl, 1982; Gowda et al., 2004; Han et al., 1976; Herrera-Saldana et al., 1990; Hill et al., 1990; Hill et al., 1996; Holm, 1971; Hongtrakul et al., 1998; ITCF, 1993; ITCF/ONIC, 1990; ITCF/ONIC, 1991; Jacob et al., 1996; Jacob et al., 1997; Kuan et al., 1982; Landry et al., 1988; Leeson et al., 1974; Lekule et al., 1990; Lin et al., 1987; Luis et al., 1982; Maertens et al., 1985; Maliboungou et al., 1998; Marcondes et al., 2009; Mariscal Landin, 1992; Mitaru et al., 1983; Morgan et al., 1975; Mossé et al., 1988; Myer et al., 1985; Nadeem et al., 2005; Nageswara et al., 2003; Neucere et al., 1980; Neumark, 1970; Nwokolo, 1987; Okoh et al., 1982; Owusu-Domfeh et al., 1970; Parigi-Bini et al., 1991; Perez et al., 1984; Pozy et al., 1996; Rajaguru et al., 1985; Ranaweera et al., 1981; Ravindran et al., 1994; Roa et al., 1997; Senne et al., 1998; Singh et al., 2005; Skiba et al., 2000; Sosulki et al., 1990; Storey et al., 1982; Taverner et al., 1981; Wainman et al., 1979; Walker, 1975; Woodman, 1945; Yamazaki et al., 1986

Last updated on 24/10/2012 00:43:25

Sorghum grain, high tannin

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 88.6 2.0 85.8 93.0 40
Crude protein % DM 10.2 1.0 8.6 12.5 43
Crude fibre % DM 3.7 0.8 2.5 4.8 42
NDF % DM 12.2 1.9 10.6 14.7 6
ADF % DM 6.4 2.0 4.3 9.3 6
Lignin % DM 2.9 1
Ether extract % DM 3.6 0.3 3.2 4.1 39
Ash % DM 1.8 0.3 1.4 2.4 33
Starch (polarimetry) % DM 72.8 68.7 76.8 2
Total sugars % DM 1.1 1
Gross energy MJ/kg DM 18.9 0.6 18.6 20.5 25 *
 
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 0.5 0.2 0.3 0.9 26
Phosphorus g/kg DM 3.4 0.4 2.7 4.1 27
Magnesium g/kg DM 2.4 0.2 2.0 2.7 23
Manganese mg/kg DM 7 1
Zinc mg/kg DM 17 1
Copper mg/kg DM 3 1
Iron mg/kg DM 24 1
 
Amino acids Unit Avg SD Min Max Nb
Alanine % protein 8.7 0.4 8.4 9.2 3
Arginine % protein 4.2 0.5 3.5 4.9 8
Aspartic acid % protein 6.9 0.5 6.6 7.4 3
Cystine % protein 1.6 0.1 1.4 1.8 7
Glutamic acid % protein 21.1 0.6 20.6 21.8 3
Glycine % protein 3.2 0.4 2.7 4.0 9
Histidine % protein 2.3 0.2 1.9 2.6 9
Isoleucine % protein 4.0 0.4 3.1 4.5 11
Leucine % protein 13.7 0.5 12.9 14.5 9
Lysine % protein 2.2 0.2 1.8 2.6 11
Methionine % protein 1.5 0.2 1.3 1.9 10
Phenylalanine % protein 5.5 0.3 5.0 5.9 9
Proline % protein 6.7 2.1 5.3 9.1 3
Serine % protein 4.6 0.4 4.0 5.2 9
Threonine % protein 3.3 0.2 3.1 3.7 11
Tryptophan % protein 1.2 0.6 0.8 1.8 3
Tyrosine % protein 4.2 0.4 3.5 4.8 9
Valine % protein 5.1 0.6 4.4 6.0 7
 
Secondary metabolites Unit Avg SD Min Max Nb
Tannins (eq. tannic acid) g/kg DM 13.9 7.7 2.1 29.9 9
Tannins, condensed (eq. catechin) g/kg DM 55.7 31.3 22.0 121.0 33
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 86.2 *
Energy digestibility, ruminants % 83.7 *
DE ruminants MJ/kg DM 15.8 *
ME ruminants MJ/kg DM 13.3 *
Nitrogen digestibility, ruminants % 66.8 *
 
Pig nutritive values Unit Avg SD Min Max Nb
Energy digestibility, growing pig % 84.3 3.3 76.6 85.9 6 *
DE growing pig MJ/kg DM 15.9 0.6 14.5 16.1 6 *
MEn growing pig MJ/kg DM 15.5 *
NE growing pig MJ/kg DM 12.3 *
Nitrogen digestibility, growing pig % 63.5 3.3 58.5 68.7 6
 
Poultry nutritive values Unit Avg SD Min Max Nb
AMEn cockerel MJ/kg DM 15.7 *
AMEn broiler MJ/kg DM 15.4 *

The asterisk * indicates that the average value was obtained by an equation.

References

AFZ, 2011; Antongiovanni et al., 1980; Cousins et al., 1981; Jacob et al., 1996; Jacob et al., 1997; Mitaru et al., 1983; Myer et al., 1985; Neucere et al., 1980; Perez et al., 1984; Ravindran et al., 1994

Last updated on 24/10/2012 00:43:25

Sorghum grain, low tannin

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 87.4 0.7 85.3 89.3 42
Crude protein % DM 11.8 0.8 10.3 13.0 22
Crude fibre % DM 2.2 0.2 1.9 2.4 21
NDF % DM 9.6 1.0 8.2 11.0 8
ADF % DM 4.2 0.1 4.1 4.3 3
Lignin % DM 1.9 1.8 1.9 2
Ether extract % DM 3.6 0.2 3.1 3.8 18
Ash % DM 1.6 0.3 1.2 2.2 10
Starch (polarimetry) % DM 73.4 1.2 70.6 75.4 15
Total sugars % DM 1.0 0.1 0.7 1.1 15
Gross energy MJ/kg DM 18.9 0.2 18.4 19.3 13 *
 
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 0.2 0.1 0.2 0.3 3
Phosphorus g/kg DM 2.8 0.7 2.2 3.6 4
Potassium g/kg DM 3.6 3.6 3.6 2
Sodium g/kg DM 0.4 0.4 0.4 2
Magnesium g/kg DM 1.1 1.0 1.1 2
Manganese mg/kg DM 15 13 8 30 3
Zinc mg/kg DM 17 4 14 21 3
Copper mg/kg DM 3 1 3 4 3
Iron mg/kg DM 70 1
 
Amino acids Unit Avg SD Min Max Nb
Alanine % protein 8.6 0.5 8.2 9.6 5
Arginine % protein 3.9 0.2 3.6 4.1 6
Aspartic acid % protein 6.5 0.4 6.0 6.9 5
Cystine % protein 1.8 0.3 1.6 2.3 4
Glutamic acid % protein 20.3 1.3 18.7 21.7 5
Glycine % protein 3.0 0.3 2.8 3.5 5
Histidine % protein 2.4 0.2 2.3 2.7 6
Isoleucine % protein 3.7 0.6 2.3 4.1 7
Leucine % protein 12.4 1.1 10.1 13.4 7
Lysine % protein 2.2 0.2 2.0 2.5 8
Methionine % protein 1.7 0.2 1.5 1.9 8
Phenylalanine % protein 5.1 0.2 4.8 5.4 6
Proline % protein 6.8 1.5 5.5 8.5 3
Serine % protein 4.3 0.2 4.0 4.5 5
Threonine % protein 3.2 0.4 2.7 3.9 8
Tryptophan % protein 0.9 0.2 0.7 1.1 7
Tyrosine % protein 3.8 0.6 3.0 4.6 6
Valine % protein 4.8 0.4 4.5 5.2 4
 
Secondary metabolites Unit Avg SD Min Max Nb
Tannins (eq. tannic acid) g/kg DM 0.5 0.1 0.4 0.8 76
Tannins, condensed (eq. catechin) g/kg DM 0.5 0.6 0.0 1.0 4
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 89.1 82.0 91.0 2 *
Energy digestibility, ruminants % 86.8 78.5 88.2 2 *
DE ruminants MJ/kg DM 16.4 *
ME ruminants MJ/kg DM 13.8 12.1 14.6 2 *
Nitrogen digestibility, ruminants % 70.5 *
 
Pig nutritive values Unit Avg SD Min Max Nb
Energy digestibility, growing pig % 86.7 *
DE growing pig MJ/kg DM 16.4 16.4 16.6 2 *
MEn growing pig MJ/kg DM 16.0 *
NE growing pig MJ/kg DM 12.7 *
Nitrogen digestibility, growing pig % 83.4 80.4 86.4 2
 
Poultry nutritive values Unit Avg SD Min Max Nb
AMEn cockerel MJ/kg DM 16.0 *
AMEn broiler MJ/kg DM 15.7 *

The asterisk * indicates that the average value was obtained by an equation.

References

AFZ, 2011; Bell et al., 1989; Cousins et al., 1981; Fialho et al., 1995; Hongtrakul et al., 1998; ITCF/ONIC, 1990; ITCF/ONIC, 1991; Lin et al., 1987; Mitaru et al., 1983; Myer et al., 1985; Ravindran et al., 1994; Wainman et al., 1979

Last updated on 24/10/2012 00:43:25

Sorghum grain, red varieties

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 89.8 2.9 85.1 93.9 16
Crude protein % DM 10.7 1.9 8.7 15.9 18
Crude fibre % DM 3.1 0.8 1.9 4.8 17
NDF % DM 10.0 2.1 7.4 13.0 5
ADF % DM 3.5 0.7 2.7 4.8 6
Lignin % DM 0.5 0.2 0.4 0.8 5
Ether extract % DM 3.5 0.4 2.9 4.4 18
Ash % DM 1.9 0.3 1.4 2.6 18
Starch (polarimetry) % DM 75.0 1.7 72.9 77.0 5
Total sugars % DM 0.8 0.1 0.7 0.8 4
Gross energy MJ/kg DM 18.9 18.4 19.1 2 *
 
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 0.3 0.1 0.1 0.4 12
Phosphorus g/kg DM 3.8 0.6 3.0 5.0 13
Potassium g/kg DM 4.6 0.8 3.1 5.7 10
Sodium g/kg DM 0.2 1
Magnesium g/kg DM 1.7 0.3 1.3 2.3 10
Manganese mg/kg DM 9 9 10 2
Zinc mg/kg DM 24 1
Copper mg/kg DM 3 1
Iron mg/kg DM 80 1
 
Amino acids Unit Avg SD Min Max Nb
Alanine % protein 8.8 0.6 8.2 9.6 5
Arginine % protein 3.6 0.5 2.9 4.2 5
Aspartic acid % protein 6.5 0.3 5.9 6.8 5
Cystine % protein 1.9 0.4 1.6 2.5 5
Glutamic acid % protein 19.9 1.1 18.2 21.2 5
Glycine % protein 3.1 0.2 2.8 3.3 5
Histidine % protein 2.1 0.4 1.6 2.4 4
Isoleucine % protein 3.8 0.3 3.6 4.2 5
Leucine % protein 12.2 0.4 11.8 12.9 5
Lysine % protein 2.2 0.2 2.0 2.5 5
Methionine % protein 1.9 0.2 1.6 2.0 5
Phenylalanine % protein 4.7 0.3 4.4 5.2 5
Proline % protein 8.5 1
Serine % protein 4.4 0.3 4.2 5.0 5
Threonine % protein 3.2 0.2 3.0 3.5 5
Tryptophan % protein 1.0 0.0 1.0 1.1 4
Tyrosine % protein 4.2 1
Valine % protein 4.7 0.4 4.4 5.3 5
 
Secondary metabolites Unit Avg SD Min Max Nb
Tannins (eq. tannic acid) g/kg DM 1.0 1.0 0.2 2.5 4
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 87.3 *
Energy digestibility, ruminants % 84.7 *
DE ruminants MJ/kg DM 16.0 *
ME ruminants MJ/kg DM 13.4 *
Nitrogen digestibility, ruminants % 67.5 *
 
Pig nutritive values Unit Avg SD Min Max Nb
Energy digestibility, growing pig % 85.2 *
DE growing pig MJ/kg DM 16.1 *
MEn growing pig MJ/kg DM 15.6 *
NE growing pig MJ/kg DM 12.4 *
Nitrogen digestibility, growing pig % 67.4 1
 
Poultry nutritive values Unit Avg SD Min Max Nb
AMEn cockerel MJ/kg DM 16.1 *
AMEn broiler MJ/kg DM 15.7 *

The asterisk * indicates that the average value was obtained by an equation.

References

AFZ, 2011; CIRAD, 1991; ITCF, 1993; Maliboungou et al., 1998; Parigi-Bini et al., 1991

Last updated on 24/10/2012 00:43:25

Sorghum grain, white varieties

Main analysis Unit Avg SD Min Max Nb
Dry matter % as fed 90.7 2.0 85.4 93.7 20
Crude protein % DM 11.2 1.1 9.5 13.6 22
Crude fibre % DM 2.9 0.8 1.8 4.2 22
NDF % DM 9.6 2.1 7.3 13.0 6
ADF % DM 3.1 0.6 2.6 4.2 6
Lignin % DM 0.6 0.5 0.2 1.6 6
Ether extract % DM 3.8 0.6 2.6 5.0 21
Ash % DM 2.0 0.4 1.5 2.9 22
Starch (polarimetry) % DM 74.9 2.6 71.5 78.2 7
Total sugars % DM 1.1 0.5 0.7 1.7 5
Gross energy MJ/kg DM 18.9 0.6 18.3 19.6 4 *
 
Minerals Unit Avg SD Min Max Nb
Calcium g/kg DM 0.3 0.1 0.2 0.5 18
Phosphorus g/kg DM 4.1 0.5 3.4 4.9 18
Potassium g/kg DM 4.4 0.9 2.4 5.3 15
Sodium g/kg DM 0.3 1
Magnesium g/kg DM 1.9 0.4 1.0 2.5 17
Manganese mg/kg DM 11 8 14 2
Zinc mg/kg DM 34 1
Copper mg/kg DM 3 1
Iron mg/kg DM 79 1
 
Amino acids Unit Avg SD Min Max Nb
Alanine % protein 8.8 0.5 8.3 9.6 5
Arginine % protein 3.5 0.7 2.2 4.1 5
Aspartic acid % protein 6.4 0.3 5.9 6.7 5
Cystine % protein 1.7 0.4 1.3 2.3 5
Glutamic acid % protein 20.0 0.9 18.8 21.0 5
Glycine % protein 3.0 0.2 2.7 3.2 5
Histidine % protein 2.0 0.5 1.5 2.7 4
Isoleucine % protein 3.7 0.2 3.5 4.1 5
Leucine % protein 12.3 0.6 11.7 13.1 5
Lysine % protein 2.2 0.1 2.1 2.5 5
Methionine % protein 1.7 0.2 1.4 2.0 5
Phenylalanine % protein 4.8 0.3 4.6 5.3 5
Proline % protein 8.6 1
Serine % protein 4.4 0.3 4.2 5.0 5
Threonine % protein 3.1 0.2 2.9 3.4 5
Tryptophan % protein 1.0 0.0 1.0 1.1 4
Tyrosine % protein 4.2 1
Valine % protein 4.6 0.3 4.4 5.1 5
 
Secondary metabolites Unit Avg SD Min Max Nb
Tannins (eq. tannic acid) g/kg DM 0.8 0.5 0.2 1.3 4
Tannins, condensed (eq. catechin) g/kg DM 0.0 0.0 0.0 2
 
Ruminant nutritive values Unit Avg SD Min Max Nb
OM digestibility, Ruminant % 87.7 *
Energy digestibility, ruminants % 85.2 *
DE ruminants MJ/kg DM 16.1 *
ME ruminants MJ/kg DM 13.5 *
Nitrogen digestibility, ruminants % 68.3 *
 
Pig nutritive values Unit Avg SD Min Max Nb
Energy digestibility, growing pig % 85.5 *
DE growing pig MJ/kg DM 16.2 *
MEn growing pig MJ/kg DM 15.7 *
NE growing pig MJ/kg DM 12.5 *
Nitrogen digestibility, growing pig % 75.5 1
 
Poultry nutritive values Unit Avg SD Min Max Nb
AMEn cockerel MJ/kg DM 16.3 *
AMEn broiler MJ/kg DM 15.9 *

The asterisk * indicates that the average value was obtained by an equation.

References

AFZ, 2011; CIRAD, 1991; Cirad, 2008; ITCF, 1993; Jacob et al., 1997; Maliboungou et al., 1998; Parigi-Bini et al., 1991

Last updated on 24/10/2012 00:43:26

References 
Abdel Ati, K. A. ; Mustafa, A. E. ; Mohamed, H. E., 2009. The effect of dietary Nigella sativa seeds on the blood cholesterol and lipoprotein levels of rabbits. J. Anim. Plant Sci., 3 (3): 227-230 web icon
Abdoulaye, T. ; Sanders, J., 2006. Sorghum or maize in West African poultry rations. International Sorghum and Millet Collaborative Research Support Program (INTSORMIL CRSP) web icon
Abubakar, M. ; Doma, U. D. ; Kalla, D. J. U. ; Ngele, M. B. ; Augustine, C. L. D., 2006. Effects of dietary replacement of maize with malted or unmalted sorghum on the performance of weaner rabbits. Livest. Res. Rural Dev., 19 (5): 65. 6pp web icon
Addison, K. B. ; Cameron, D. G. ; Blight, G. W., 1984. Biuret, sorghum and cottonseed meal as supplements for weaner cattle grazing native pastures in sub coastal south east Queensland. Trop. Grassl., 18 (3): 113-120 web icon
Adeola, O., 2006. Amino acid digestibility of corn, pearl millet, and sorghum for white Pekin ducks, Anas platyrinchos domesticus. J. Poult. Sci., 43 (4): 357-364 web icon
Aderemi, F. ; Wuraola, A., 2010. Effects of dietary replacement of maize with malted or unmalted sorghum on the performance of weaner rabbits. Afr. J. Food Agric. Nutr. Dev., 10 (9): 4032-4046 web icon
Afify, A. E. M. M. ; El-Beltagi, H. S. ; Abd El-Salam, S. M. ; Omran, A. A., 2012. Oil and fatty acid contents of white sorghum varieties under soaking, cooking, germination and fermentation processing for improving cereal quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40 (1): 86-92 web icon
Aganga, A. A. ; Omphile, U. J. ; Malope, P. ; Chabanga, C. H. ; Motsamai, G. M. ; Motsumi, L. G., 2000. Traditional poultry production and commercial broiler alternatives for small-holder farmers in Botswana. Livest. Res. Rural Dev., 12 (4) web icon
Al-Mamary, M. ; Al-Habori, M. ; Al-Aghbari, A. ; Al-Oneidi, A., 2001. In vivo effects of dietary sorghum tannins on rabbit digestive enzymes and mineral absorption. Nut. Res., 21 (10): 1393-1401 web icon
Anderson, J. ; Capper, B. S. ; Bromage, N. R., 1991. Measurement and prediction of digestible energy values in feedstuffs for the herbivorous fish tilapia (Oreochromis niloticus Linn.). Br. J. Nutr., 66: 37-48 web icon
Antongiovanni, M. ; Giorgetti, A. ; Franci, O., 1980. Amino acid composition of two varieties of sorghum grain. Anim. Feed Sci. Technol., 5 (3): 169-173 web icon
Aureli, R. ; Guggenbuhl, P. ; Broz, J., 2015. Effects of protease supplementation on the amino acid standardized ileal digestibility in sunflower, sorghum, wheat middling and fish meal in broiler chickens. 11e J. Rech. Avicole et Palmipèdes à Foie Gras, Tours, 25-26 mars 2015, 650-655 web icon
Awika, J. M. ; Rooney, L. W., 2004. Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65: 1199-1221 web icon
Ball, C. R. ; Rothgeb, B. E., 1915. Uses of sorghum grain. U.S. Department of Agriculture. Farmers Bulletin No. 686 web icon
Balole, T. V. ; Legwaila, G. M., 2006. Sorghum bicolor (L.) Moench. Record from Protabase. Brink, M. & Belay, G. (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. web icon
Bandyopadhyay, R. ; Frederickson, R. ; McLaren, N. W. ; Odvody, G. N. ; Ryley, M., 1998. Ergot: a new disease threat to sorghum in the Americas and Australia. Plant Disease, 82 (4) web icon
Baran, M. S. ; Gul, I. ; Demirel, R., 2008. Effects of sorghum on nutrient digestibility and some milk parameters in dairy cow rations. J. Anim. Vet. Adv., 7 (7): 879-884 web icon
Batonon-Alavo, D. I.; Umar Faruk, M.; Lescoat, P.; Weber, G. M.; Bastianelli, D., 2015. Inclusion of sorghum, millet and cottonseed meal in broiler diets: a meta-analysis of effects on performance. Animal, 9 (preprint) web icon
Behnke, K. C., 1983. Grain dust : using it as a feed ingredient. Feed International, April 1983
Bell, J. M. ; Keith, M. O., 1989. Factors affecting the digestibility by pigs of energy and protein in wheat, barley and sorghum diets supplemented with canola meal. Anim. Feed Sci. Technol., 24 (3-4): 253-265 web icon
Bhannasiri, T., 1970. Personal communication. Ministry of Agriculture and Cooperative, Bangkok (Thailand)
Blaha, J. ; Salah el Din, H. M. ; Christodoulou, V. ; Mudrik, Z., 1984. The possibility of replacing maize by sorghum in broiler chick feed mixtures. Agricultura Tropica et Subtropica, 17: 175-187
Blaha, J. ; Salah Eldin, H. M. ; Jakl, A, 1985. Use of groundnut and cottonseed oil meals in sorghum based broiler feed mixtures. Agricultura Tropica et Subtropica, 18: 59-67
Blair, R., 2008. Nutrition and feeding of organic poultry. Cabi Series, CABI, Wallingford, UK web icon
Bowen, H. J. M. ; Peggs, A., 1984. Determination of the silicon content of food. J. Sci. Food Agric., 35 (1): 1225-1229 web icon
Carabaño Luengo, R., 1995. Valor nutritivo de los cereales en conejos. XI Curso de Especializacion FEDNA, Barcelona, 7-8 Nov 1995: 6 pp.
Carré, B. ; Brillouet, J. M., 1986. Yield and composition of cell wall residues isolated from various feedstuffs used for non-ruminant farm animals. J. Sci. Food Agric., 37 (4): 341-351 web icon
Carregal, R. D. ; Fanelli, S. M. L. ; Ferraz, J. B. S., 1980. Partial and total substitution of the corn by sorghum in rations of growing rabbits. Partial and total substitution of the corn by sorghum in rations of growing rabbits 2nd World Rabbit Congress; Barcelona 2:260-264
CGIAR, 2009. SSA Feeds - Sub-saharan Africa feed composition database. CGIAR Systemwide Livestock Programme web icon
CGIAR, 2010. From research to results: CGIAR Annual Report 2009. Consultative group on international agriculture research, web icon
Chandrasekharaiah, M. ; Sampath, K. T. ; Thulasi, A. ; Anandan, S., 2001. In situ protein degradability of certain feedstuffs in the rumen of cattle. Indian J. Anim. Sci., 71 (3): 261-264
Chapoutot, P., 1998. Étude de la dégradation in situ des constituants pariétaux des aliments pour ruminants. Thèse Docteur en Sciences Agronomiques, Institut National Agronomique Paris-Grignon, Paris (FRA), 1998/11/17.
Chughtai, M. F. J. ; Pasha, I. ; Anjum, F. M. ; Nasir, M. A., 2015. Characterization of sorghum and millet with special reference to fatty acid and volatile profile. Turk. J. Agric., 3 (7): 515-521 web icon
Cirad, 2008. Laboratory data 1993-2008. CIRAD
Cousins, B. W. ; Tanksley, T. D. Jr. ; Knabe, D. A. ; Zebrowska, T., 1981. Nutrient digestibility and performance of pigs fed sorghum varying in tannin concentration. J. Anim. Sci., 53 (6): 1524-1537 web icon
Daghir, N. J., 2008. Poultry production in hot climates. Second Edition, Cabi Series, CABI web icon
De Boever, J. L. ; Aerts, J. V. ; Cottyn, B. G. ; Vanacker, J. M. ; Buysse, F. X., 1984. The in sacco protein degradability vs. protein solubility of concentrate ingredients. Z. Tierphysiol., Tierernährg. u. Futtermittelkde., 52: 227-234 web icon
De Boever, J. L. ; Cottyn, B. G. ; Vanacker, J. M. ; Boucqué, C. V., 1994. An improved enzymatic method by adding gammanase to determine digestibility and predict energy value of compound feeds and raw materials for cattle. Anim. Feed Sci. Technol., 47 (1-2): 1-18 web icon
Degani, G., 2006. Digestible energy in dietary sorghum, wheat bran and rye in the common carp (Cyprinus carpio L.). Israeli J. Aquacult. - Bamidgeh, 58 (2): 71-77 web icon
Demchenko, M. P. ; Khramtsova, E. M., 1985. Sorghum in pelleted feeds [for rabbits]. Krolikovodstvo i Zverovodstvo: 9
Dessimoni Carregal, R. ; Fanelli, S. M. L. ; Ferraz, J. B. S., 1980. Partial and total substitution of maize by sorghum in growing rabbit diets. 2ème congrès mondial de cuniculture, 1980
Dewar, W. A., 1967. The zinc and mangenese contents of some british poultry foods. J. Sci. Food Agric., 18: 68-71 web icon
Donkoh, A. ; Attoh-Kotoku, V., 2009. Nutritive value of feedstuffs for poultry in Ghana: chemical composition, apparent metabolizable energy and ileal amino acid digestibility. Livest. Res. Rural Dev., 21 (3) web icon
Economides, S. ; Koumas, A. ; Georghiades, E. ; Hadjipanayiotou, M., 1990. The effect of barley-sorghum grain processing and form of concentrate mixture on the performance of lambs, kids and calves. Anim. Feed Sci. Technol., 31 (1-2): 105-116 web icon
Ecoport, 2009. Ecoport database. Ecoport web icon
Ecoport, 2010. Ecoport database. Ecoport web icon
Eeckhout, W. ; De Paepe, M., 1994. Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. Technol., 47 (1-2): 19-29 web icon
Egbo, M. L. ; Adegbola, T. A. ; Oyawoye, E. O. ; Abubakar , M. M., 2007. Effect of dietary energy sources on growth performance, nutrient digestibility and carcass characteristics of rabbits. Anim. Prod. Res. Adv., 3 (2): 115-120 web icon
El Zubeir, E. A. ; Jubarah, S. K., 1993. Nutritional evaluation of sorghum germ meal as a substitute for sorghum in broiler diets. Anim. Feed Sci. Technol., 44 (1-2): 93-100 web icon
Elkin, R. G., 2002. Nutritional components of feedstuffs: a qualitative chemical appraisal of protein. In: Poultry Feedstuffs Supply, Composition and Nutritive Value. Editors: McNab, J. and Boorman, N. Poultry science symposium series ; volume 26 web icon
Erasmus, L. J. ; Botha, P. M. ; Cruywagen, C. W. ; Meissner, H. H., 1994. Amino acid profile and intestinal digestibility in dairy cows or rumen-undegradable protein from various feedstuffs. J. Dairy Sci., 77 (2): 541-551 web icon
FAO, 2009. Grassland Index. A searchable catalogue of grass and forage legumes. FAO, Rome, Italy web icon
Fekete, S.; Gippert, T., 1986. Digestibility and nutritive value of nineteen important feedstuffs for rabbits. J. Appl. Rabbit Res., 9: 103-108
Fialho, E. T. ; Barbosa, H. P. ; Albino, L. F. T., 1995. Chemical composition, digestible protein and energy values of some alternative feedstuffs for pigs in Brazil. Anim. Feed Sci. Technol., 55 (3-4): 239-245 web icon
Fredrickson, E. L. ; Estell, R. E. ; Havstad, K. M. ; Shupe, W. L. ; Murray, L. W., 1995. Potential toxicity and feed value of onions for sheep. Livest. Prod. Sci., 42 (1): 45-54 web icon
Frigg, M., 1976. Bio-availability of biotin in cereals. Poult. Sci., 55 (6): 2310-2318 web icon
Furlan, A. C. ; Scapinello, C. ; Moreira, A. C. ; Martins, E. N. ; Murakami, A. E. ; Jobim, C. C., 2004. Performance of growing rabbits fed on diets containing high moisture sorghum silage grain with low or high tannin contents. Proceedings - 8th World Rabbit Congress – September 7-10, 2004 – Puebla, Mexico: 834-838 web icon
Furuya, S. ; Kaji, Y. ; Asano, T. ; Murayama, R., 1988. Ileal digestibilities of amino acids in wheat bran, rice bran, rapeseed meal, grain sorghum, meat and bone meal and feather meal for growing pigs. Japanese Journal of Zootechnical Science, 59: 407-443
Gidenne, T., 2000. Recent advances in rabbit nutrition: emphasis on fibre requirements. A review. World Rabbit Science, 8 (1): 23-32 web icon
Gongnet, G. P. ; Assane, M. ; Dezoumbe, D., 1993. Effect of different protein intakes on growth performance of rabbits of local breeds. Ann. Zootech., 42 (1) : 75-79 web icon
Gulbransen, B, 1985. Survival feeding of cattle with molasses. 2. Feeding steers with molasses/urea plus either sorghum grain (Sorghum vulgare) or cottonseed meal (Gossypium hirsutum). Aust. J. Exp. Agric. Anim. Husb., 25 (1): 4-8 web icon
Hahn, R. R., 1970. Sorghum production and utilization. Westport, Conn., Avi
Hamman, L. ; Dhuyvetter, K. C. ; Boland, M., 2001. Economic issues with grain sorghum. Kansas State University Cooperative Extension Service Publication MF-2513, Manhattan, Kan. web icon
Han, I. K. ; Hochstetler, H. W. ; Scott, M. L., 1976. Metabolizable energy values of some poultry feeds determined by various methods and their estimation using metabolizability of the dry matter. Poult. Sci., 55 (4): 1335-1342 web icon
Hancock, J. D. ; Hines, R. H. ; Gugle, T. L., 1991. Extrusion of sorghum, soybean meal, and whole soybeans improves growth performance and nutrient digestibility in finishing pigs. Kansas State University Swine Day 1991. Report of Progress 641, 107-109 web icon
Hansen, V. ; Sunesen, N., 1973. Milo grain as a feed for fattening pigs. Beretning fra Forsoegslaboratoriet, 408, 28 pp
Hasan, M. R. ; Hecht, T. ; De Silva, S. S. ; Tacon, A. G. J., 2007. Study and analysis of feeds and fertilizers for sustainable aquaculture development. FAO Fisheries Technical Paper. No. 497. Rome, FAO. 510p. web icon
Herrera-Saldana, R. E. ; Huber, J. T. ; Poore, M. H., 1990. Dry matter, crude protein, and starch degradability of five cereal grains. J. Dairy Sci., 73 (9): 2386-2393 web icon
Hertrampf, J. W.; Piedad-Pascual, F., 2000. Handbook on ingredients for aquaculture feeds. Kluwer Academic Publishers, 624 pp. web icon
Hill, G. M. ; Hanna, W. W., 1990. Nutritive characteristics of pearl millet in beef cattle diets. J. Anim. Sci., 68: 2061-2066 web icon
Hill, G. M. ; Newton, G. N. ; Streeter, M. N. ; Hanna , W. W. ; Utley, P. R. ; Mathis, M. J., 1996. Digestibility and utilization of pearl millet diets fed to finishing beef cattle. J. Anim. Sci, 74: 1728-1735 web icon
Holm, J., 1971. Feeding tables. Composition and nutritive value of feedstuffs in Northern Thailand. Nutrition Laboratory of the Thai German Dairy Project, Livestock Breeding Station Huey Kaeo, Chiang Mai web icon
Hongtrakul, K. ; Goodband, R. D. ; Behnke, K. C. ; Nelssen, J. L. ; Tokach, M. D. ; Bergström, J. R. ; Nessmith, W. B. Jr. ; Kim, I. H., 1998. The effects of extrusion processing of carbohydrate sources on weanling pig performances. J. Anim. Sci., 76 (12): 3034-3042 web icon
Huang, K. H. ; Li, X. ; Ravindran, V. ; Bryden, W. L., 2006. Comparison of apparent ileal amino acid digestibility of feed ingredients measured with broilers, layers, and roosters. Poult. Sci., 85 (4): 625–634 web icon
Huang, K. H. ; Ravindran, V. ; Li, X. ; Ravindran, G. ; Bryden, W. L., 2007. Apparent ileal digestibility of amino acids in feed ingredients determined with broilers and layers. J. Sci. Food Agric., 87 (1): 47-53 web icon
ITCF/ONIC, 1990. Qualité des sorghos - Récolte de France 1990. ITCF - ONIC
ITCF/ONIC, 1991. Qualité des sorghos - Récolte de France 1991. ITCF - ONIC
Iyayi, E. A. ; Adeola, O., 2014. Standardized ileal amino acid digestibility of feedstuffs in broiler chickens. Europ. Poult. Sci., 78 web icon
Jacob, J. P. ; Mitaru, B. N. ; Mbugua, P. M. ; Blair, R., 1996. The feeding value of Kenyan sorghum, sunflower seed cake and sesame seed cake for broilers and layers. Anim. Feed Sci. Technol., 61: 41-56 web icon
Jacob, J. P. ; Mitaru, B. N. ; Mbugua, P. M. ; Blair, R., 1997. The nutritive value of Kenyan sorghum. World Poultry, 13 (2): 40-43
Jacquin, C., 1991. Le sorgho grain - Culture et utilisation. ITCF 1991
Kazue Otutumil, L. ; Furlan, A. C. ; Scapinello, C. ; Nunes Martins, E. ; Peralta, R. M. ; Lopes de Souza, D. ; Santolim, M. L. R., 2005. Digestibility and intestinal enzymatic activity of growing rabbits fed different sources of starch processed or not by extrusion. Rev. Bras. Zootec., 34 (2) : 557-567 web icon
Kemm, E. H. ; Ras, M. N. ; Daiber, K. H., 1984. Nutrient digestibility and performance of pigs fed sorghum varying in polyphenol concentration and maize as gram sources. South Afr. J. Anim. Sci., 14 (1) web icon
King, D. ; Fan, M. Z. ; Ejeta, G. ; Asem, E. K. ; Adeola, O., 2000. The effects of tannins on nutrient utilisation in the White Pekin duck. Br. Poult. Sci., 41 (5): 630-639 web icon
Kotarski, S. F. ; Thurn, K. K. ; Toure, A. ; Miller, F. R. ; Waniska R. D., 1992. Grain sorghum digestion by ruminal microflora. Texas Tech Sorghum Research Initiative web icon
Kuan, K. K. ; Mak, T. K. ; Razak Alimon, Farrell, D. J., 1982. Chemical composition and digestible energy of some feedstuffs determined with pigs in Malaysia. Trop. Anim. Prod., 7:315-321
Kyarisiima, C. C. ; Okot, M. W. ; Svihus, B., 2008. Use of wood ash in the treatment of high tannin sorghum for poultry feeding. South Afr. J. Anim. Sci., 34 (2): 110-115 web icon
Landry, J. ; Delhaye, S. ; Viroben, G., 1988. Tryptophan content of feedstuffs as determined from three procedures using chromatography of barytic hydrolysates. J. Agric. Food Chem., 36: 51-52 web icon
Laurent, F., 1988. Review : Utilization of wheat grain and other cereals in diets for dairy cows. Ann. Zootech., 37 (2): 117-132 web icon
Lebas, F., 2004. Reflections on rabbit nutrition with a special emphasis on feed ingredients utilization. Proceedings of the 8th World Rabbit Congress, September 7-10, 2004, Puebla, Mexico 2004 web icon
Leeson, S. ; Boorman, K. N. ; Lewis, D. ; Shrimpton, D. H., 1974. Metabolisable energy studies with turkeys : metabolisable energy of dietary ingredients. Br. Poult. Sci., 15 (2): 183-189 web icon
Lekule, F. P. ; Jorgensen, H. ; Fernandez, J. A. ; Just, A., 1990. Nutritive value of some tropical feedstuffs for pigs. Chemical composition, digestibility and metabolizable energy content. Anim. Feed Sci. Technol., 28: 91-101 web icon
Lin, F. D. ; Knabe, D. A. ; Tanksley, T. D. Jr., 1987. Apparent digestibility of amino acids, gross energy and starch in corn, sorghum, wheat, barley, oat groats and wheat middlings for growing pigs. J. Anim. Sci., 64 (6): 1655-1663 web icon
Lodge, S. L. ; Stock, R. A. ; Klopfenstein, T. J. ; Shain, D. H. ; Herold, D. W., 1997. Evaluation of corn and sorghum distillers by-products. J. Anim. Sci., 75 (1): 37-43 web icon
Longe, O. G. ; Tona, G. O., 1988. Metabolizable energy values of some tropical feedstuffs for poultry. Trop. Agric. (Trinidad), 65 (4):358-360 web icon
Lowell, T., 1998. Nutrition and feeding of fish. Aquaculture Series, Springer, 267 pp
Luis, E. S. ; Sullivan, T. W. ; Nelson, L. A., 1982. Nutrient composition and feeding value of proso millets, sorghum grains, and corn in broiler diets. Poult. Sci., 61 (2): 311-320 web icon
Lukefahr, S. D., 1998. Rabbit production in Uganda : Potential versus opportunity. World Rabbit Science, 6 (3-4): 331-340 web icon
Ma, L. ; Zhang, N., 2010. Measurement of outflow rate and degradation from rumen of commonly used feeds for roe deer. J. Jilin Agricultural University, 32 (1): 95-99 web icon
Maertens, L. ; Moermans, R. ; De Groote, G., 1985. Prediction of the apparent digestible energy (ADE) content of commercial pelleted feeds for rabbits. J. Appl. Rabbit Res., 11: 60-67
Magness, J.R. ; Markle, G. M. ; Compton, C. C., 1971. Food and feed crops of the United States. Interregional Research Project IR-4, IR Bul. 1, (Bul. 828 New Jersey Agric. Expt. Sta.) web icon
Maliboungou, J. C. ; Lessire, M. ; Hallouis, J. M., 1998. Composition chimique et teneur en énergie métabolisable des matières premières produites en République Centrafricaine et utilisables chez les volailles. Rev. Elev. Méd. Vét. Pays Trop., 51 (1): 55-61 web icon
Mariscal Landin, G., 1992. Facteurs de variation de l'utilisation digestive des acides aminés chez le porc. Thèse Université de Rennes I. N°706
Massigoge, J. I. ; Zamora, M. ; Melín, A., 2002. Evaluación del contenido de taninos en híbridos de sorgos graníferos. INTA. Chacra Experimental Integrada Barrow. Buenos Aires. Argentina web icon
Mehmood, S. ; Orhan, I. ; Ahsan, Z. ; Aslan, S. ; Gulfraz, M., 2008. Fatty acid composition of seed oil of different Sorghum bicolor varieties. Food Chem., 109 (4): 855–859 web icon
Mitaru, B. N. ; Reichert, R. D. ; Blair, R., 1983. Influence of the nutritive value of high tannin sorghums for broiler chickens by high moisture storage (reconstitution). Poult. Sci., 62: 2065-2072 web icon
Morales-Zuniga, E., 1980. The utilization of root floor of buffalo gourd (Cucurbita foedidissima) for feeding rabbits in northern Mexico. 2nd World Rabbit Congress, Barcelona April 1980, 2: 225-241
Morgan, D. J. ; Cole, D. J. A. ; Lewis, D., 1975. Energy values in pig nutrition. J. Agric. Sci., 84: 7-17
Moss, R. J. ; Hannah, I. J. C. ; Kenman, S. J. ; Buchanan, I. K. ; Martin, P. R. Editor(s): Stone, G. M., 2000. Response by dairy cows grazing tropical grass pasture to barley or sorghum grain based concentrates and lucerne hay. Asian-Aust. J. Anim. Sci., 13 (Suppl.): 163-168 web icon
Mossé, J. ; Huet, J. C. ; Baudet, J., 1988. The amino acid composition of whole sorghum grain in relation to its nitrogen content. Cereal Chem., 65 (4): 271-277 web icon
Muriu, J. I. ; Njoka-Njiru, E. N. ; Tuitoek, J. K. ; Nanua, J. N., 2002. Evaluation of sorghum (Sorghum bicolor) as replacement for maize in the diet of growing rabbits (Oryctolagus cuniculus). Asian-Aust. J. Anim. Sci., 15 (4): 565-569 web icon
Mustafa, E. A. ; El Zubeir, E. A., 1993. Sorghum gluten as a substitute for soybean meal in broiler chick diets. World Rev. Anim. Prod., 76: 58-61
Myer, R. O. ; Gorbet, D. W., 1985. Waxy and normal grain sorghums with varying tannin contents in diets for young pigs. Anim. Feed Sci. Technol., 12: 179-186 web icon
Nageswara, A. R. ; Reddy, V. R., 2003. Sorghum and millets as layer duck rations. Indian J. Anim. Sci., 73 (3): 319-322 web icon
Neucere, N. J. ; Sumrell, G., 1980. Chemical composition of different varieties of grain sorghum. J. Agric. Food Chem., 28: 19-21 web icon
Neumark, H., 1970. Personal communication. Volcani Institute of Agricutural Reseach, Israel
Ngele, M. B. ; Abubakar, M. ; Kalla, D. J. U. ; Ngele, G. T. ; Egbo, M. L. ; Bernard, P. D. D., 2008. The effects of red sorghum based diets on the carcass and organ characteristics of rabbits. Anim. Prod. Res. Adv., 4 (3-4): web icon
NRC, 1996. Lost Crops of Africa. Volume I Grains. National Research Council, Washington DC web icon
Nwokolo, E., 1987. Composition and availability of nutrients in some tropical grains and oilseeds. Nutr. Rep. Int., 36 (3):631-640 web icon
Offner, A.; Bach, A.; Sauvant, D., 2003. Quantitative review of in situ starch degradation in the rumen. Anim. Feed Sci. Technol., 106 (1-4): 81-93 web icon
Okoh, P. N. ; Obilana, A. T. ; Njoku, P. C. ; Aduku, A. O., 1982. Proximate analysis, amino acid composition and tannin content of improved nigerian sorghum varieties and their potential in poultry feeds. Anim. Feed Sci. Technol., 7: 359-364 web icon
Oliveira, J. S. ; Huber, J. T. ; Ben-Ghedalia, D. ; Swingle, R. S. ; Theurer, C. B. ; Pessarakli, M., 1993. Influence of sorghum grain processing on performance of lactating dairy cows. J. Dairy Sci., 76 (2): 575-581 web icon
Omole, T. A., 1982. The effect of level of dietary protein on growth and reproductive performance in rabbits. J. Appl. Rabbit Res., 5 (3): 83-88
Ørskov, E. R. ; Nakashima, Y. ; Abreu, J. M. F. ; Kibon, A. ; Tuah, A. K., 1992. Data on DM degradability of feedstuffs. Studies at and in association with the Rowett Research Organization, Bucksburn, Aberdeen, UK. Personal Communication
Owusu-Domfeh, K. ; Christensen, D. A. ; Owen, B. D., 1970. Nutritive value of some Ghanaian feedstuffs. Can. J. Anim. Sci., 50 (1): 1-14 web icon
Parigi-Bini, R. ; Xiccato, G. ; Cinetto, M. ; Carazzolo, A. ; Guzzinati, R., 1991. Composizione e degradabilità ruminale di alimenti zootecnici di provenienza tropicale (Senegal). Atti IX Congresso Nazionale ASPA, 35-46
Payne, M.; Owen, E.; Capper, B. S.; Wood, J. F. Radwan, M. A.H, 1988. Incorporation of grass silage, whole cereal grains, cassava and cottonseed meal into diets of rabbits kept in a simulated tropical environment. Trop. Anim. Health Prod., 20 (4): 212-218 web icon
Perez, J. M. ; Bourdon, D., 1984. Prévision de la valeur énergétique et azotée des sorghos à partir de leurs teneurs en tanins. Journées Rech. Porc., 16: 293-300
Piccioni, M., 1965. Dictionnaire des aliments pour les animaux. Edagricole, 640 pp.
Powell, J. M., 1985. Yields of sorghum and millet and stover consumption by livestock in the Subhumid Zone of Nigeria. Trop. Agric. (Trinidad), 62 (1): 77-81
Price, P. B. ; Parsons, J.G., 1975. Lipids of seven cereal grains. J. Am. Oil Chem. Soc., 52 (12): 490-493 web icon
Rajaguru, A. S. B. ; Ravindran, V., 1985. Metabolisable energy values for growing chicks of some feedstuffs from Sri Lanka. J. Sci. Food Agric., 36 (1): 1057-1064 web icon
Rajini, R. A. ; Rukmangadhan, S. ; Ravindran, R. ; Mohan, B. ; Muruganandhan, B. ; Vedhanayagam, K., 1986. Replacing maize with other grains in broiler diet. Indian J. Poult. Sci., 21 (4): 343-344
Ranaweera, K. N. P. ; Nano, W. E., 1981. True and apparent metabolizable energy of some indigenous feedingstuffs and finished feeds determined by modified rooster bioassay techniques. J. Agric. Sci., 97 (2): 403-407 web icon
Ravindran, V. ; Ravindran, G. ; Sivalogan, S., 1994. Total and phytate phosphorus contents of various food and feedstuffs of plant origin. Plant Chemistry, 50: 133-136 web icon
Reddy, K. J. ; Reddy, G. V. K. ; Reddy, M. B. ; Rao, M. R., 1995. Utlization of sorghum (Sorghum vulgare) grain by crossbred dairy heifers. Livestock Adviser, 20 (2): 11-13
Reed, J. D., 1995. Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci., 73 (5): 1516-1528 web icon
Reed, J. D., 2008. High tannin sorghum diets and oxidative stability in beef. Texas Tech Sorghum Research Initiative web icon
Richert, B. T. ; Hancock, J. D. ; Hines, R. H. ; Gugle, T. L., 1992. Extruded corn, sorghum and soybean meal for nursery pigs. Kansas State University Swine Day 1992
Rivero, R. ; Perez, G. ; Sosa, N. ; Combellas, J., 1984. Supplementation of sorghum silage for growing heifers and milking cows. Trop. Anim. Prod., 9 (2): 114-121 web icon
Roa, M. L. ; Bárcena-Gama, J. R. ; Gonzales, S. ; Mendoza, G. ; Ortega, M. E. ; Garcia, C., 1997. Effect of fiber source and a yeast culture (Saccharomyces cerevisiae 1026) on digestion and the environnement of cattle. Anim. Feed Sci. Technol., 64: 327-336 web icon
Rooney, L. W., 1984. Tannins and phenols in sorghum. Texas Tech Sorghum Research Initiative web icon
Russell, R. W. ; Lolley J. R., 1989. Deactivation of tannin in high tannin milo by treatment with urea. J. Dairy Sci., 72 (9): 2427-2430 web icon
Santos, F. A. P. ; Huber, J. T. ; Theurer, C. B. ; Swingle, R. S. ; Simas, J. M. ; Chen, K. H. ; Yu, P., 1998. Milk yield and composition of lactating cows fed steam-flaked sorghum and graded concentrations of ruminally degradable protein. J. Dairy Sci., 81 (1): 215-220 web icon
Sauvant, D.; Perez, J. M.; Tran, G., 2004. Tables INRA-AFZ de composition et de valeur nutritive des matières premières destinées aux animaux d'élevage: 2ème édition. ISBN 2738011586, 306 p. INRA Editions Versailles web icon
Sauvant, D., 1997. Nutritional and zootechnical consequences of variations in starch degradation rate in ruminants. Inra Prod. Anim., 10 (4): 287-300 web icon
Singh, D. N. ; Trapett, P. C. ; Nagle, T. ; Perez-Maldonado, R., 2005. Energy and amino-acids digestibilities of pearl millet hybrids when fed to broilers. Proc. 17th Aust. Poult. Sci. Symp., Sydney, New South Wales, Australia, 7-9 February 2005 web icon
Skiba, F. ; Hazouard, I. ; Bertin, J. M. ; Chauvel, J., 2000. Digestibilité du phosphore de 14 matières premières et influence de la phytase végétale dans l'alimentation du porc charcutier. Journées Rech. Porc., 32: 169-175
Sosulki, F. W. ; Imafidon, G. I., 1990. Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. J. Agric. Food Chem., 38: 1351-1355 web icon
Stark, C. R. ; Behnke, K. C. ; Hancock, J. D. ; Hines, R. H., 1993. Pellet quality affects growth performances of nursery and finishing pigs. Kansas State University Swine Day 1993
Storey, M. L. ; Allen, N. K., 1982. Apparent and true metabolizable energy of feedstuffs for mature, nonlaying female Embden geese. Poult. Sci., 61: 739-745 web icon
Subramanian, V. ; Metta, V. C., 2000. Sorghum grain for poultry feed. Technical and institutional options for sorghum grain mold management: proc. of an international consultation, 18-19 May 2000, ICRISAT, Patancheru, India web icon
Tassin, J., 1989. Diversity of production systems from an agroforestry perspective. Results of a survey in a rural area of Rwanda. ICRAF: 74 pp.
Taverner, M. R. ; Hume, I. D. ; Farrell, D. J., 1981. Availability to pigs of amino acids in cereal grains. Br. J. Nutr., 46: 159-169 web icon
Taylor, J. R. N., 2001. Five simple methods for the determination of sorghum grain end-use quality. Texas Tech Sorghum Research Initiative web icon
Taylor, J. R. N., 2003. Overview: Importance of sorghum in Africa. In: Belton, P. S.; Taylor, J. P. N. (Eds). Afripro, Workshop on the proteins of sorghum and millets: Enhancing nutritional and functional properties for Africa. Pretoria, South Africa, 2-4 April 2003 web icon
Theurer, C. B. ; Huber, J. T. ; Delgado-Elorduy, A. ; Wanderley, R., 1999. Invited Review: Summary of Steam-Flaking Corn or Sorghum Grain for Lactating Dairy Cows. J. Dairy Sci., 82: 1950-1959 web icon
UC SAREP, 2006. Cover crop database. University of California, Sustainable Agriculture Research & Education Program, Davis web icon
USDA, 2009. GRIN - Germplasm Resources Information Network. National Germplasm Resources Laboratory, Beltsville, Maryland web icon
van Barneveld, R. J. ; Hughes, R. J. ; Choct, M. ; Tredrea, A. ; Nielsen, S. G., 2005. Extrusion and expansion of cereal grains promotes variable energy yields in pigs, broiler chickens and laying hens. Rec. Adv. Anim. Nutr. Aust., 15: 47-55 web icon
Vignau-Loustau, L. ; Huyghe, C., 2008. Stratégies fourragères. France Agricole Editions, 2008 web icon
Visconti, A.; Donko, M. B., 1994. Survey of fumonisin production by Fusarium isolated from cereals in Europe. J. Am. Oil Chem. Soc., 77 (2): 546-550
Waghorn, G. C., 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production - progress and challenges. Anim. Feed Sci. Technol., 147 (1/3): 116-139 web icon
Wainman, F. W. ; Dewey, P. J. S. ; Boyne, A. W., 1979. Feedingstuffs Evaluation Unit - Second report 1978. Rowett Research Institute, DAFS, Edinburgh
Walker, C. A., 1975. Personal communication. Central Research Station, Mazabuka, N. Rhodesia
Walker, T., 1999. Sorghum grain for poultry and swine. ASA Technical Bulletin vol. AN20 web icon
Watson, S. A., 1970. Wet milling process and products. In: Sorghum production and Utilization. AVI Publishing Co., Westport, Connecticut
Williams, D., 1979. Rabbit raising in Saboda area. Trop. Anim. Prod., 4 (3) : 299 (abstract) web icon
Woodman, H. E., 1945. The composition and nutritive value of feeding stuffs. United Kingdom. Ministry of Agriculture, Fisheries and Food. Bulletin No. 124
Yamazaki, M. ; Kamata, H., 1986. Amino acid availability of feed ingredients for poultry. Japan. Poult. Sci., 23 (3): 147-156 web icon
170 references found
Datasheet citation 

Heuzé V., Tran G., Lebas F., 2015. Sorghum grain. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://feedipedia.org/node/224 Last updated on October 8, 2015, 13:47

English correction by Tim Smith (Animal Science consultant) and Hélène Thiollet (AFZ)
Image credits 
  • Gilles Tran, AFZ
  • Gilles Tran / AFZ
  • Gilles Tran / AFZ
  • Gilles Tran / AFZ
  • Gilles Tran / AFZ
  • Laurent Bonnal, CIRAD
  • Denis Bastianelli / CIRAD
  • Laurent Bonnal, CIRAD
  • Laurent Bonnal, CIRAD
  • Laurent Bonnal, CIRAD
  • Laurent Bonnal, CIRAD

Source URL: https://www.feedipedia.org/node/224